
H2020-JTI-EuroHPC-2019-1

Project no. 956748

ADAPTIVE MULTI-TIER INTELLIGENT DATA MANAGER FOR
EXASCALE

D3.1
Malleability requirements definition.

Version 1.0

Date: September 30, 2021

Type: Deliverable
WP number: WP3

Editor: David Exposito-Singh
Institution: UC3M

Project co-funded by the European Union Horizon 2020 JTI-EuroHPC research and innovation
programme and Spain, Germany, France, Italy, Poland, and Sweden

Dissemination Level
PU Public

√

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

ADMIRE

Change Log

Rev. Date Who Site What

1 21/04/21 Jesus Carretero UC3M Document creation.

2 04/05/21 Hamid Fard TUDA Redesign of ADMIRE architecture.

3 11/09/21 Hamid Fard TUDA Executive summary.

4 12/09/21 Hamid Fard TUDA Malleability requirements and focus of WP3.

5 20/09/21 Ramon Nou BSC I/O Malleability.

6 20/09/21 Hamid Fard TUDA Contribution in the Introduction and background
sections.

7 20/09/21 David E. Singh UC3M Intra/Inter node malleability.

8 21/09/21 Massimo Torquati CINI Safe reconfiguration state.

9 21/09/21 David E. Singh UC3M FlexMPI.

10 22/09/21 Taylan Özden TUDA Added Slurm section (Overview and Plugins).

11 22/09/21 Taylan Özden TUDA Finalized Slurm section (Malleability extension).

12 22/09/21 David E. Singh UC3M API description.

13 23/09/21 Massimo Torquati CINI Revised the introduction of ADMIRE architec-
ture.

14 23/09/21 David E. Singh UC3M Updated images of ADMIRE architecture work-
flow and data flow.

15 24/09/21 Hamid Fard TUDA Conclusion.

16 24/09/21 Hamid Fard TUDA Reorganizing the structure, integrating the mate-
rial and proofreading.

17 27/09/21 Aasem Ahmad TUDA Revised sections WP3 focus and intra/inter node
malleability.

18 27/09/21 David E. Singh UC3M UML diagram.

1

Executive Summary

Data-intensive applications represent a growing share of the applications running on HPC systems. To achieve
the best possible performance of such systems, we need a balance of compute and storage requirements for
the applications running in the systems. By emerging the new I/O technologies, such as NVMe storage, we
are still missing an extensive software stack that can harness the capacity of all available technologies in HPC
ecosystem.

To this end, ADMIRE project focuses on producing such a framework consisting three main components:
malleability manager, ad hoc parallel storage system and I/O scheduler. For malleability management, which is
the task of WP3 in this project, we need to clearly explain (a) in which level malleability should be implemented
in the project, (b) which requirements should be prepared for each level and (c) which APIs could achieve the
role of malleability manager connecting other components of ADMIRE project. This document will summarize
the answer to these critical questions.

2

CONTENTS ADMIRE

Contents

1 Introduction 4

2 Background 5
2.1 Malleability in HPC . 5
2.2 Flex-MPI . 5

2.2.1 Monitoring . 8
2.2.2 Dynamic process management . 8
2.2.3 Load balancing . 10
2.2.4 Data redistribution . 10
2.2.5 External controller . 10

2.3 MPI extension to support malleable jobs . 11
2.4 Slurm . 12

2.4.1 Overview . 12
2.4.2 Plugins . 13
2.4.3 Malleability extension . 13

3 ADMIRE Architecture 15
3.1 WP3 Focus . 16
3.2 Malleability Manager Workflow . 16

3.2.1 Intra-node malleability . 17
3.2.2 Inter-node Malleability Using a Pool of Resources 18
3.2.3 Inter-node Malleability Using Slurm . 20
3.2.4 I/O Malleability . 20
3.2.5 Safe Reconfiguration State . 21

4 Application programming interface 23
4.1 Interface of malleability manager . 23
4.2 UML diagram . 25

5 Conclusion 26

Appendix A Terminology 27

3

ADMIRE CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Traditionally, increasing the parallel computing performance of HPC systems was the main concern of providers
and users. But the ever increasing data processing needs of newer applications such as machine learning are
pushing all stakeholders to revise their view of the HPC field.

Balancing the compute and I/O requirements of the applications could lead to a more efficient utilization the
current HPC resources and achieve better performance. In line with this approach, we initiated the ADMIRE
project to provide a software stack combining computation and data resource malleability.

Consequently, since the beginning of the project proposal, malleability management was considered a vital
component of the whole system. The goal is to provide base mechanisms for the combined malleability of
compute and I/O resources. Those mechanisms will be guided by new scheduling algorithms and policies,
integrated into plugins for the Slurm batch scheduler, able to maximise throughput of the system by balancing
computation and I/O. Moreover, I/O malleability will be achieved through guiding of the ad-hoc storage systems
developed in WP2, by dynamically estimating the I/O requirements of applications.

First, a malleability protocol will be designed and implemented. It will allow negotiation of expand and
shrink operations between jobs and the ad-hoc storage systems on the one hand, and the job scheduler on
the other. The protocol will also support the job-initiated evolution of the resource set. Second, we will
develop runtime mechanisms by generalising Flex-MPI. This will provide malleability to applications and allow
their execution using the previous negotiation protocol. Finally, we will develop an application programming
interface (API) to allow application developers to insert scheduling points into their code that indicate when the
application can respond to external malleation requests.

Regarding the proposal, UC3M will lead the task and implement the malleable runtime, including the
scheduling-point APIs. BSC and JGU will design the malleability interfaces of the ad hoc storage systems de-
veloped in WP2. CINI will contribute to the co-design of the malleability manager with the intelligent controller
in WP6 and TUDA will design and implement the malleability protocol and contribute to the scheduling-point
APIs. The output of the task T3.1 will provide the base components and extensions for the combined malleabil-
ity of compute and I/O resources.

4

CHAPTER 2. BACKGROUND ADMIRE

Chapter 2

Background

In this chapter, we will first explain the concept of malleability in HPC systems. Next, we will present Flex-
MPI and an extension to the MPI standard, which are the two MPI implementations to support malleability that
are being considered for ADMIRE project. Next, we will discuss the possible approach of extending the Slurm
batch scheduler to deal with malleable jobs.

2.1 Malleability in HPC

Regarding elasticity of resource allocation, parallel jobs can be classified in four different categories [6], as
shown in the Table 2.1. Rigid jobs are the most common jobs in HPC, They provide no flexibility for chang-
ing their resources after job submission. Moldable jobs allow the resource manager to change the assigned
resources before starting the jobs. Allocated resources for evolving jobs can be modified by users, even after
job submission and during the execution time. The fourth category, malleable jobs are the most flexible class of
jobs, which are the focus of this project. Resource manager could modify the assigned/allocated resources for
malleable jobs any time before or during execution time. This modification can be shrinking or expanding of
resources. Although malleation operations may be costly and add some overhead to the system, efficient usage
of these operations can improve performance for both resource providers and users [7].

2.2 Flex-MPI

Message Passing Interface (MPI) is a standardized and portable message-passing interface designed to or-
chestrate parallel programs on parallel computing architectures. Flex-MPI is an MPI extension that supports
malleability and implements performance-aware dynamic reconfiguration for iterative MPI applications. Flex-
MPI is implemented as a library on top of the MPICH [1] implementation and automatically reconfigures the
application to run on the number of processes that is necessary to increase the performance such that an appli-
cation completes within a specified time interval. This runtime modifies the application performance by adding
or removing processes whenever it detects that the performance target is not achieved. The reconfiguration
process also depends on the user-given performance constraint which can be either the parallel efficiency or the
operational cost of executing the application. Alternatively, this reconfiguration can be specified by an external
controller that acts as a coordinator and resource manager.

Table 2.1: Job Classification in HPC Systems

when it decided?

at submittal during execution

who decides?
user Rigid Evolving

system Moldable Malleable

5

ADMIRE CHAPTER 2. BACKGROUND

Flex-MPI implements a computational prediction model to decide the number of processes and the process-
to-processor mapping that can achieve the required performance objective under a performance constraint.
The efficiency constraint results in minimizing the number of dynamically spawned processes to maximize
parallel efficiency. The cost constraint focuses on minimizing the operational cost by mapping the newly
created dynamic processes to those processors with the smallest cost (expressed in $ per CPU time unit) while
satisfying the performance constraint. This metric is particularly relevant when we consider heterogeneous
systems where each type of processor may have a different operational cost.

Flex-MPI targets iterative single program multiple data (SPMD) applications with both regular and irregular
computation and communication patterns. A large proportion of the SPMD parallel applications are iterative,
for instance, linear solvers, particle simulation and fluid dynamics simulators. In the SPMD paradigm, each
process executes the same code but operates on a different subset of the data. The usual structure of an iterative
SPMD application consists of an initializing section in which each process loads its data partition; what follows
is an iterative section during which the processes operate in parallel and communicate with each other to reach
a global solution. This approach focuses on applications which use one-dimensional and two-dimensional
distributed data structures in which each process stores only its own data partition and does not replicate data
managed by the other processes.

Flex-MPI was implemented as a library on top of the MPICH, release v.3.0.4. This makes it fully compat-
ible with all the features of the MPI-3 standard. Figure 2.1 shows the execution environment of an application
which consists of the Flex-MPI library, the MPI user application, the Performance API (PAPI) [9] and MPI li-
brary, the user-given performance objective and performance constraints, and the resource management system.
Figure 2.2 shows the workflow diagram of a malleable MPI application. Each box shows in square brackets the
components that provide the corresponding functionality. Initially, the MPI application runs on n processes.
At every iteration, the MPI program instrumented to use the Flex-MPI API automatically sends different appli-
cation performance metrics to the monitoring (M) module (label 1.a). These include hardware performance
counters, communication profiling data, and the execution time for each process. Once Flex-MPI has collected
these metrics it returns the control to the MPI application (label 1.b). Additionally, at every sampling inter-
val—consisting of a fixed, user-defined number of consecutive iterations—the monitoring module feeds the
gathered performance metrics to the reconfiguring policy (RP) module (label 2). This allows the RP module
to track the current performance of the application and decide whether it needs to reconfigure the application
to adjust the performance of the program to the objective. A reconfiguring action involves either the addition
(label 3.a) or removal (label 3.b) of processes. The computational prediction model (CPM) estimates the

MPI library

MPI calls MPI wrapped calls XMPI calls

FLEX-MPI library

PAPI
library

Performance
objective and

constraints

Resource
Management
System

Load balancing
Computational

prediction
model

Reconfiguring
policy

PMPI interface

MPI application

Monitoring
Dynamic
process

management

Data
redistribution

Figure 2.1: Execution environment of a Flex-MPI application.

6

CHAPTER 2. BACKGROUND ADMIRE

MPI application

P0 P1 P2 P3 Pn

Performance monitoring
[M]

Performance evaluation
[RP, CPM]

Spawn p processes
and expand MPI
communicator

[DPM]

Redistribute data
[LB, DR]

Redistribute data
[LB, DR]

Shrink MPI
communicator and

remove p processes
[DPM]

1.a. Values of performance metrics during
 last iteration

3.b. Dynamic
reconfiguring
action (shrink)

3.a. Dynamic
reconfiguring

action (expand)

4.a. Resume program
execution with m (n+p)

processes

1.b. Return control

4.b. Resume program
execution with m (n-p)

processes

2. Values of performance metrics during
 last sampling interval

Figure 2.2: Workflow diagram of a malleable MPI application using Flex-MPI.

number of processes and the computing power (in FLOPs) required to satisfy the performance objective. Us-
ing this prediction, the RP module computes the new process-to-processor mapping based on the number and
type of the processors that are available and the performance constraint (efficiency or cost). The number and
type of available processors is provided by the resource management system.

The dynamic process management (DPM) module implements the process spawn and remove functionali-
ties and is responsible for rescheduling the processes according to the mapping. A reconfiguring action changes
the data distribution between processes, which may lead to load imbalance. Each time a reconfiguring action is
carried out, the load balancing (LB) module computes the new workload distribution based on the computing
power of the processing elements allocated to the application. The data redistribution (DR) module is respon-
sible for mapping and redistributing the data between processes according to the new workload distribution.
We define each of the computing cores of a multi-core processor as a processing element (PE). Once Flex-MPI
has reconfigured the application to the new number of processes (m), it resumes its execution (labels 4.a and
4.b).

Application developers can access the Flex-MPI library through the API, which consists of a set of high-
level interfaces—carrying the XMPI prefix—that automatically reconfigure the MPI application. MPI initialize
(MPI_Init) and finalize (MPI_Finalize) functions are wrapped to initialize and finalize the Flex-MPI
library functionalities and the MPI environment. MPI point-to-point and collective communication operations
are wrapped to collect performance metrics. Wrapped functions are managed using the MPI profiling interface
(PMPI) which redirects the function calls to the Flex-MPI library in a user-transparent way.

Figure 2.3 shows a comparison between a simplified legacy code sample and the same code instrumented
with Flex-MPI functions. The SPMD application uses a data structure (vector A) distributed between the
processes (L4). In the iterative section of the code (L5-10) each process operates in parallel on a different
subset of the data structure. At the end of every iteration, the program performs a collective reduce operation
(L9). In the legacy code all the MPI specific functions (in red) are managed by the MPI library.

The instrumented code consists of: (1) native MPI functions (in red), (2) wrapped functions (in yellow),
(3) Flex-MPI functions which allow the parallel program to get and set some library-specific parameters (in
blue), and (4) Flex-MPI functions to access the dynamic reconfiguration library functions (in green). Addition-
ally, all the references to the default communicator MPI_COMM_WORLD in the legacy code are replaced with
XMPI_COMM_WORLD, a dynamic communicator provided by Flex-MPI. To simplify the presentation the in-
strumented code shows the high-level interfaces of the Flex-MPI API without the required function parameters.

7

ADMIRE CHAPTER 2. BACKGROUND

MPI_init((...);

MPI_Comm_rank(...);
MPI_Comm_size(...);

XMPI_Get_wsize((...);

XMPI_Register((...);

XMPI_Get_shared_data((...);

for((it;(it(<(itmax;(it++)({

XMPI_Monitor_init(();

for((i=displ;(i(<(displ+count;(i(++)({
//Parallel(computation

}

MPI_Allreduce((...);

XMPI_Eval_reconfiguration((...);

XMPI_Get_process_status((...);

if((status(==(EMPI_REMOVED)(break;
}

MPI_Finalize(();

MPI_Init(...);

MPI_Comm_rank(...);
MPI_Comm_size(...);

MPI_Scatter((...);

for((it=0;(it(<(itmax;(it++)({

for((i=0;(i(<(count;(i(++)({
//Parallel(computation

}

(((MPI_Allreduce((...);
}

MPI_Finalize(();

Legacy code (MPI)

Instrumented code (FLEX-MPI)

L1:

L2:
L3:

L4:

L5:

L6:
L7:
L8:

L9:
L10:

L11:

L1:

L2:
L3:

L4:

L5:

L6:

L7:

L8:

L9:
L10:
L11:

L12:

L13:

L14:

L15:
L16:

L17:

Figure 2.3: Comparison of the legacy code (left) and the instrumented Flex-MPI code (right) of an iterative
MPI application.

In Flex-MPI the MPI initialize (L1), finalize (L17), and communication (L12) functions are transparently
managed by the Flex-MPI library using the PMPI interface. The rest of the MPI specific functions (L2-3) are
directly managed by the MPI library. The parallel code is instrumented with a set of functions to get the initial
partition of the domain assigned to each process (L4) and register each of the data structures managed by the
application (L5). Registering is necessary to know which data structures should be redistributed every time a
reconfiguring action is carried out.

The DR module communicates with the newly spawned processes to pass them the corresponding domain
partition before starting the execution of the iterative section (L6). The iterative section of the code is instru-
mented to monitor each process of the parallel application (L8) during every iteration. In addition, at every
sampling interval, the RP module evaluates whether reconfiguring (L13) is required. Then each process checks
its execution status (L14). In case that the RP module decides to remove a process, this leaves the iterative
section (L15) and terminates execution. The following sections provide a description of the components.

2.2.1 Monitoring

Flex-MPI uses FLOP to calculate the computing power of each processor as the number of floating point
operations per second FLOPs. PAPI and PMPI are used to dynamically collect performance metrics from
the MPI program and low-level PAPI interfaces to track the number of floating point operations FLOP , the
real time Treal (i.e. the wall-clock time), and the CPU time Tcpu (i.e. the time during which the processor
is running in user mode). PMPI is an interface provided by the MPI library to profile MPI programs and
collect performance data without modifying the source code of the application or accessing the underlying
implementation. The PMPI interface is used to collect the type of MPI communication operation, the size of
the data transferred between processes, and the time spent in communication operations.

2.2.2 Dynamic process management

The dynamic process management module manages the addition and removal of MPI processes, as well as
the inter-process communication whenever a reconfiguring action is carried out. This functionality uses the
dynamic processes management interface of MPI to spawn dynamic processes at runtime.

MPI provides a default intra-communicator MPI_COMM_WORLDwhich encapsulates the set of all processes
initiated by the mpirun/mpiexec command. From now on we refer to this set of processes as the initial set
of processes. Those processes which are dynamically spawned and removed at runtime are called dynamic pro-

8

CHAPTER 2. BACKGROUND ADMIRE

remote_comm

MPI_COMM_WORLDMPI_COMM_WORLD

XMPI_COMM_WORLD

MPI_COMM_WORLD

Spawn (nprocs=2)
<<

MPI_COMM_WORLD

MPI_COMM_WORLD

XMPI_COMM_WORLD

MPI_COMM_WORLD

MPI_COMM_WORLD

XMPI_COMM_WORLD remote_comm

MPI_COMM_WORLD

MPI_COMM_WORLD

XMPI_COMM_WORLD

MPI_COMM_WORLD MPI_COMM_WORLD

remote_comm

MPI_COMM_WORLD

1 P0 P1 P2

P0 P1 P2

P0 P1 P2

P0 P1 P2

2

3

4

P* P*

P* P*

P*P3

P3 P4

Figure 2.4: Low-level actions of dynamic process management functionality at process creation.

cesses. Due to the restrictions of the current implementation of MPI, only dynamic processes can be removed
at runtime. The members of the initial set of processes (default intra-communicator MPI_COMM_WORLD) can-
not be terminated until the program completes and dynamic processes can not be added to or removed from
this default communicator. For this reason, Flex-MPI introduces its own global intra-communicator called
XMPI_COMM_WORLD to enable communication between initial and dynamic processes.

Figure 2.4 illustrates the behavior of the dynamic process management module when two dynamic pro-
cesses (P3,P4) are added to an MPI program already running on an initial set of processes (P0-2) (step 1).
Each of the new processes is spawned using an individual call to MPI_Comm_spawn. This makes each pro-
cess have its own (MPI_COMM_WORLD) intra-communicator and remote_comm remote communicator (step
2). The local and remote communicators are merged by invoking MPI_Intercomm_merge, which returns
a new XMPI_COMM_WORLD intra-communicator encapsulating processes P0-3 (step 3). The merge function
is invoked once more to merge this intra-communicator and the remote communicator of P4. The result is a
global intra-communicator which encapsulates all of the processes (P0-4) (step 4).

The reconfiguring policy dictates both the number of processes and the type of processors on which to
spawn them. MPI provides a mechanism to set the host key of the MPI_Info argument of MPI_Comm_spawn
to the host name of the compute node where the new process needs to be allocated. The dynamic process man-
agement module implements a scheduler which uses the mechanism provided by MPI to map processes to
compute nodes with processor types corresponding to those dictated by the reconfiguring policy.

Removing a dynamic MPI process from an application implies disconnecting the process from the commu-
nicator XMPI_COMM_WORLD to allow the process to leave the iterative section and finish execution by invok-
ing MPI_Finalize. This operation is implemented by first deallocating the merged intra-communicator and
then allocating a new intra-communicator for the remaining processes. Due to the fact that MPI_Finalize
is blocking and collective for all the processes in MPI_COMM_WORLD, each dynamic process must have been
spawned via a separated call to allow individual termination.

Figure 2.5 illustrates the behavior of the dynamic process management module when process P4 is removed
from the previous MPI program (step 1). The current XMPI_COMM_WORLD is deallocated. This allows dis-
connecting P4 from the rest of the processes (step 2). A new group is then formed via MPI_Group_incl to
include P0-P3, and a new intra-communicator XMPI_COMM_WORLD is allocated for this group. P4 finishes
its execution by calling MPI_Finalize (step 3).

9

ADMIRE CHAPTER 2. BACKGROUND

MPI_COMM_WORLD MPI_COMM_WORLD MPI_COMM_WORLD

MPI_COMM_WORLD

XMPI_COMM_WORLD

MPI_COMM_WORLD

>>

MPI_COMM_WORLD

MPI_COMM_WORLD

XMPI_COMM_WORLD

MPI_COMM_WORLD MPI_COMM_WORLD

Remove (rank=4)
>>

1

2

3

P0 P1 P2

P0 P1 P2

P0 P1 P2

P3 P4

P3 P4

P3 P*

Figure 2.5: Low-level actions of dynamic process management functionality at process removal.

2.2.3 Load balancing

Load balancing is a major issue in parallel applications because it can have a huge impact on the overall
performance of the program. Flex-MPI integrates a dynamic load balancing technique for SPMD applications
that uses the performance metrics collected by the monitoring functionality to make workload distribution
decisions. One of the main advantages of this approach is that it does not require prior knowledge about the
underlying architecture. The load balancing module computes the new workload distribution using the values
for the computing power of each processor on which the application is running the MPI processes. The idea is
to assign to each process a data partition that is proportional to the relative computing power which is defined
as the computing power of the processor (in FLOPs) divided by the sum of the computing power of all of the
p processors on which the MPI program is running.

2.2.4 Data redistribution

Flex-MPI provides a user-transparent data redistribution mechanism which is triggered as a result of load bal-
ancing when a reconfiguring action is carried out. The data redistribution module uses MPI standard messages
to efficiently move data between MPI processes at runtime. The data structures that it can handle must be
one-dimensional (e.g., vectors) or two-dimensional (e.g., matrices), and they may be dense or sparse with
block-based one-dimensional (row or column) domain decomposition. Once the load balancing module de-
cides the new workload distribution, the data redistribution module maps it to a set of data partitions—one per
process—and moves this data from the previous to the new owners.

When the dynamic process management module spawns a new process this will receive a portion of the
data which is proportional to the computing power of the processor mapped to the process. When a process is
terminated its data is transferred to the remaining processes according to the computing power of the processors
mapped to each of these processes.

2.2.5 External controller

Flex-MPI can be also configured as a passive component that receives the reconfiguration commands from an
external controller. In this case, the root process of each running application will execute a Flex-MPI proxy
running as a separate thread1 The proxy includes a listener port for receiving the reconfiguration commands
from the external controller. These commands include: creating new application processes in certain compute
nodes; destroying application processes; performing CPU affinity in which certain application processes are
bound to specific CPU cores; activating/deactivating the application monitoring, and specifying the Flex-MPI
optimization policy.

1Note that there will be a single proxy thread per application, independently of the application number of processes.

10

CHAPTER 2. BACKGROUND ADMIRE

When monitoring is activated, the proxy uses a sender port to send the performance metrics to the external
controller. These metrics are internally aggregated by Flex-MPI and include the total number or the average
number of events (FLOPS, MIPS, I/O operations per second, etc.) among the existing application processes.

2.3 MPI extension to support malleable jobs

The work presented in [3] proposes an extension to the MPI standard to provide malleable capabilities to MPI
applications. The main idea behind this proposal is to only introduce few new MPI operations in order to
simplify the application programmability and reduce the reconfiguration overheads. Another advantage of this
extension is that it is fully integrated with an extension of Slurm that was developed by the same team. In this
way, it is possible to use it in real execution environments. In this extension, the reconfiguration is initiated by
the resource manager, such that the application acts as a passive entity receiving the resource manager decisions
for performing malleable reconfigurations. Algorithm 1 shows a pseudocode of this extension that consists of
four new operations. The first one is used for initializing the MPI library considering previous malleable
actions. The second one indicates if it is necessary to perform a reconfiguration. The last two operations are
used to to define the beginning and end of the reconfiguration window, that is defined as the code section in
which a reconfiguration can be carried out. A more detailed description of these operations is shown below.

Algorithm 1: Malleable pseudocode example of the MPI extension to support malleable jobs.
1: MPI_Init_adapt(. . .);
2: for . . . do
3: MPI_Probe_adapt(. . .);
4: if (malleable action is performed) then
5: MPI_Comm_adapt_begin(. . .);
6: MPI_Comm_adapt_commit(. . .);
7: end if
8: end for

• MPI_INIT_ADAPT. This operation is equivalent to MPI_INIT that serves to initialize the MPI runtime.
The difference between them is that with this new operation it is possible to distinguish whether each
application process was created at the beginning of the application execution or it is a new process
created during a malleable reconfiguration.

• MPI_PROBE_ADAPT This operation permits the preexisting processes to query the resource manager
if there is a pending reconfiguration and what is the status of each application process. The status can
be STAYING, if the process remains in the process group after the reconfiguration; JOINING, if the
process is a newly created instance, and LEAVING, if the process is going to be removed from the
process group. This information will determine the actions taken by each of the application processes
during the reconfiguration.

• MPI_COMM_ADAPT_BEGIN. This operation starts the application reconfiguration. Note that the pro-
grammer is responsible for inserting this call in a safe and appropriate place of the source code. Af-
ter the operation execution, two communicators are generated: one equivalent to the one provided by
the standard spawn operations, and another one that represents the final global communicator. Both of
them only include the processes that remain after the reconfiguration (the ones flagged as STAYING and
JOINING).

• MPI_COMM_ADAPT_COMMIT. This operation is used to commit the reconfiguration. The operation
modifies MPI_COMM_WORLD communcator in the way that any leaving processes are eliminated from
it, and any new joining processes are inserted into it. This operation also notifies the Slurm resource
manager that the reconfiguration has been completed.

11

ADMIRE CHAPTER 2. BACKGROUND

2.4 Slurm

This section introduces the workload manager Slurm, describes its programming interfaces and its extensibility
by using plugins, and evaluates possible modifications in order to incorporate malleability based on recent
works.

2.4.1 Overview

Slurm [12] is an open source resource and job management system used by a large number of today’s HPC
facilities. Regarding the proposal, Slurm is the workload manager of choice in the ADMIRE project. Slurm’s
key functionalities include allocation of compute resources, provisioning of a framework allowing users and
administrators to start and monitor workloads, and management of a queue comprising pending jobs [11].

Slurm’s centralized architecture provides an ideal environment to connect ADMIRE components in order to
manage the overall system state by orchestrating the execution of user-submitted batch jobs. The slurmctld
is the central controller of Slurm and is responsible for the communication of work to the slurmd instances
running on each compute node. An overview of the Slurm architecture with its components and a partial list of
supported commands is given in Figure 2.6.

Figure 2.6: Slurm Architecture (taken from [11])

We plan to leverage the collection of APIs provided by Slurm to facilitate the integration into the ADMIRE
software stack. Slurm’s APIs allow users and applications to directly query data online in order to receive
relevant runtime information. The APIs provide methods to query data such as overall Slurm information,
job information (regardless of state) and information on compute nodes as well as resource allocation. A
complete list of API functions is given in [10]. The ADMIRE APIs exposed to users will make implicit use
of provided functions by the Slurm APIs. The actions taken within the ADMIRE API will be forwarded to
a plugin connecting ADMIRE components with Slurm. Additionally, we plan to extend and make use of
presently available plugin APIs to integrate ADMIRE-related functionalities into well-established HPC use
cases (see Section 2.4.2).

12

CHAPTER 2. BACKGROUND ADMIRE

2.4.2 Plugins

Slurm provides a plugin interface for general-purpose extensions. We plan to extend Slurm with a plugin to
connect it to ADMIRE components (i.e. the Intelligent Controller). The plugin takes the responsibility of
communicating job-related actions to Slurm and is the bridging interface between the ADMIRE APIs and the
Slurm core components.

In addition to a project-specific plugin, we evaluate the employment of several presently available Slurm
plugins for common HPC use cases. These considerations currently comprise the following plugins:

• Job submit plugin: Methods provided by this plugin API are initiated when jobs are submitted or mod-
ified. A use case for ADMIRE includes setting project-specific parameters in jobs and the interception
of jobs after they have been submitted by users. Additionally, our software stack needs to be aware of all
modifications of jobs to keep the overall system state up-to-date.

• Scheduler plugin: The scheduler plugin determines the schedule of jobs. As the scheduling algorithm
is a vital part of the Malleability Manager (see the Task 3.2, in the project proposal), we plan to employ
the plugin to apply schedule decisions taken by the Malleability Manager and the Intelligent Controller.

• Node selection plugin: This plugin is responsible for the selection of compute resources. One of AD-
MIRE’s key objectives is to create an intelligent I/O software stack. As the placement of jobs on compute
resources plays an important role in preventing I/O congestion, we evaluate the employment of this plugin
to allow contention-aware resource allocations.

2.4.3 Malleability extension

According to the ADMIRE project proposal, the partners have agreed to extend Slurm to support malleable
batch jobs using the plugin interface described in Section 2.4.2. However, this approach only offers limited
capabilities when it comes to expanding or shrinking the number of compute nodes assigned to a job at certain
scheduling points.

Further investigation showed an extension to Slurm to support malleable jobs [2], based on a previous
work where an early Slurm prototype capable of supporting adaptation operations for interactive MPI applica-
tions was presented [3]. The authors extended and replaced the slurmctld by two components: the Elastic
Runtime Scheduler (ERS) and the Adaptive Batch Scheduler (ABS). Whereas the ERS manages expand and
shrink operations, the ABS is a scheduler plugin responsible for scheduling and the reconfiguration of batch
jobs. An overview of the architecture is given in Figure 2.7. Within ADMIRE, we plan to extend the ERS to
accept expand and shrink operations from the project-specific ADMIRE plugin (receiving commands from the
Intelligent Controller) and forward and apply malleability decisions by employing the proposed ABS.

The development on this extension is part of the EuroHPC project DEEP-SEA [4] that may lead to an inter-
project collaboration. The ADMIRE partners agreed that the extension presented in [2] suits our requirements
and is the best candidate to extend Slurm with a support for node-level malleability. Furthermore, a cooperation
between ADMIRE, DEEP-SEA and the REGALE [5] project is currently investigated. However, this introduces
additional considerations. First, the latest version of the extension is based on an outdated Slurm version and
will consequently require the adaptation to the latest version. Second, the extension is based on iMPI (see
Section 2.3). As ADMIRE bases its adaptive MPI runtime on Flex-MPI (Section 2.2), an adaptation to support
Flex-MPI is currently considered.

13

ADMIRE CHAPTER 2. BACKGROUND

Figure 2.7: Slurm Malleability Extension (taken from [2])

14

CHAPTER 3. ADMIRE ARCHITECTURE ADMIRE

Chapter 3

ADMIRE Architecture

WP4

I/O Scheduler

WP3

Malleability Manager

WP6

Intelligent

Controller

WP2

Ad-hoc Storage

SLURM

I/O state

Back-end storage

QoS Control

Control commands

System state

WP5

Sensing and Profiling

System, storage, application states

Monitoring commands

Monitoring

Distributed

Database

IC

WP7

ApplicationsA
D

M
IR

E

a
p
p

lic
a

ti
o
n

m
a

n
a

g
e

r

QoS Control

I/O malleability decision

Ad-hoc Storage system monitoring

Monitoring: LIME + Paratools TAU

Monitoring:

applications

ADMIRE-enabled

applications + user

hints

WP5

Monitoring

Manager

Performance

Database

Startup

HSM data flow

Figure 3.1: ADMIRE architecture overview. Each component developed in the project’s scope has included the
label of its related Work Package (WP).

Figure 3.1 illustrates an overview of the ADMIRE architecture, its components and the exchanged informa-
tion (data and control) between these components. The storage subsystem is represented on the upper part of
the figure and consists of the ad-hoc and back-end storage systems. The ad-hoc storage system is designed by
ADMIRE’s WP2 and is responsible for providing to each application an ad-hoc parallel file system tailored to
the application’s characteristics. The latter one (back-end storage) represents the parallel file system used by the
HPC platform (e.g., Lustre). Both storage systems are coordinated by the I/O scheduler (shown in the upper-left
corner of the figure), which is responsible for the deployment and configuration of the ad-hoc storage, the spec-
ification of Quality-of-Service (QoS) metrics and the implementation of I/O scheduling policies. The applica-
tions that are being executed in the platform are shown in the central-right part of Figure 3.1. ADMIRE-enabled
applications can provide user-defined application-specific information to the system to aid the identification of
I/O patterns and reconfiguration-safe states in which malleable commands can be executed. Both applications
and storage systems are monitored by the Sensing and Profiling component (lower-right corner of the figure),
which is developed in WP5. This component is responsible for collecting system-wide performance metrics
at node-level which will be stored in an internal database. Also, this component will enable the generation of

15

ADMIRE CHAPTER 3. ADMIRE ARCHITECTURE

performance models to aid the malleability manager for a more concrete schedule solution. The Monitoring
Manager (lower-central part of the figure) will manage this database and will generate performance metrics and
models related to each running application concerning both I/O as well as computational activities. The Mal-
leability Manager (lower-left corner of the figure) is responsible for determining the malleable actions related
to each running application and ad-hoc storage system. These actions may produce reconfiguration of process-
es/threads of a specific application or the deployment/removal of one or more instances of the ad-hoc storage to
better balance the computation and I/O requirements. The Intelligent Controller (central part of the figure) has
different roles. The first one is to collect the current system status using the information collected from Slurm,
the Monitoring Manager, the storage systems, and the applications. This will include combined information
about the hardware status, the existing running applications, and the storage. This information will be kept in
an internal distributed database. The second role of the Intelligent Controller is to generate performance models
of these components and use them to predict potential performance bottlenecks in the system. These models
will also be provided to the Malleability Manager and I/O scheduler to support the decision-making of both of
them. The third main role of the Intelligent Controller is to coordinate the actions taken by other ADMIRE’s
components. Examples of these actions are (1) to activate/deactivate each application monitoring and (2) to
send the malleable decisions taken by the Malleability Manager to the I/O scheduler or the applications, in case
of being I/O-related or application-related decisions, respectively.

3.1 WP3 Focus

To apply malleability, we need to support malleability at application level (programming model, e.g. [8]),
node level (OS and runtime system), and resource management and job scheduling level. We will provide
malleability at application level by preparing a programming model to define a set of so-called scheduling
points that address the possible points for applying malleable operations. At node level, we need to extend
the core of Slurm to supporting malleability since Slurm assumes all jobs as rigid jobs. Finally, we need a
malleability management to suggest schedule solutions based on a set of malleability mechanisms to complete
the cycle of malleability in the project.

In state-of-the-art malleability management systems, only computational resources are assumed to be mal-
leable. Although this type of malleability has been efficiently applied on several real-world problems, it could
not be efficient enough for the execution of huge data-intensive applications in HPC environments, as the mal-
leability of computational resources also affects the I/O requirements of such applications.

In the ADMIRE project, we will work toward a combination of computation and I/O malleability, such
that we could achieve a balance for computation and I/O requirements of the jobs. The Malleability Manager
is one of the three main components in ADMIRE, alongside the I/O scheduler and the ad-hoc file system.
Malleability management balances I/O and compute performance via dynamic scaling of application resources.
The ADMIRE malleability management module, which is the task of WP3, will offer several configurable
policies for the elasticity of computational and I/O resources.

In the current architecture of ADMIRE, the Malleability Manager (MM) obtains the system’s current state
from the Intelligent Controller and provides back the schedule solutions at each scheduling point of the appli-
cation. The Intelligent Controller analyzes the provided schedule solutions to assess their compliance with the
system requirements and limitations. In affinity cases, the intelligent controller forwards the schedule solutions
to the Job and I/O schedulers to reconfigure the job resources. Otherwise, the Intelligent Controller overrides
the provided schedule solutions.

3.2 Malleability Manager Workflow

This section describes the actions taken by the Malleability Manager for each execution scenario. An execution
scenario defines the existing system conditions when a malleable action is taken. In the following sections,
we consider four different execution scenarios: intra-node malleability, inter-node malleability using a pool of
resources, inter-node malleability using Slurm, and I/O malleability.

16

CHAPTER 3. ADMIRE ARCHITECTURE ADMIRE

Algorithm 2: Malleability Manager workflow for intra-node malleability.
1: The Malleability Manager is executed
2: for each running application do
3: Intelligent Controller: system status notification including application performance
4: Malleability Manager: application performance analysis
5: Malleability Manager: malleable action
6: Intelligent Controller: malleable action analysis
7: if malleable action is performed then
8: Intelligent Controller: wait for application
9: Intelligent Controller: malleable action forwarding

10: Intelligent Controller: wait for completion
11: Intelligent Controller: application status update
12: end if
13: end for

3.2.1 Intra-node malleability

This strategy can be used when the application scheduler assigns exclusive compute nodes to each executed
application. In this context, the main focus of this approach is twofold: first, to leverage the malleability for
using the unassigned cores. For instance, assuming that each compute node has 32 cores and an application
is originally executed with 48 processes. Then, when the application is executed, it will have two compute
nodes exclusively assigned to it. In this way, there will be 16 extra cores that could be used by increasing the
application size by 16. This approach will potentially allow to increase the application CPU performance if it
has a good scalability, consequently, compute-intensive applications will be benefited by the strategy. However,
the application I/O throughput is not likely to be improved given that the number of compute nodes will not
change. The second objective of this strategy is to increase the application load-balance by changing the number
of allocated resources in each compute node. Note that, this enhancement can be applied at CPU-level or at I/O-
level (by adjusting, by means of malleability, the I/O throughput related to each compute node). Algorithm 2
shows the Malleability Manager workflow for the intra-node malleability.

• Line 1: the Malleability Manager is executed when ADMIRE framework is deployed.

• Line 3: the Intelligent Controller creates and updates the application performance model of each running
application. In addition, the Intelligent Controller produces a system-wide performance forecast con-
sidering the models of all running applications and combining this information with other system-wide
performance metrics collected by the Sensing and Profiling module. This forecast will include potential
contention situations that may occur in the future as well as the prediction of future system performance
indicators. All this information is sent to the Malleability Manager.

• Line 4: the Malleability Manager uses the previous information provided by the Intelligent Controller to
analyze the application performance.

• Line 5: based on this analysis, a decision of performing malleable actions at node-level is made. A
malleable decision, that is related to a specific application, is sent to the Intelligent Controller. This
command will include the number of threads that the application has to create or destroy in certain
compute nodes involved in this reconfiguration.

• Line 6: the Intelligent Controller will analyze the reconfiguration command from a system holistic per-
spective. This command could be overridden in case of being counterproductive according to the results
of this analysis.

• In case that the reconfiguration command is feasible (Line 7), the Intelligent Controller will wait until
the application is in a safe reconfiguration state (Line 8).

17

ADMIRE CHAPTER 3. ADMIRE ARCHITECTURE

• Line 9: after that, the Intelligent Controller sends the reconfiguration command to the application. This
command will involve the creation/destruction of threads and/or processes in the compute nodes that are
currently used by the application.

• Line 10: the Intelligent Controller waits for the completion of the application reconfiguration. When this
operation is performed, then the application sends a notification to the Intelligent Controller.

• Line 11: after the completion of the application reconfiguration, the Intelligent Controller updates the
System Status Table that contains the list of all the executing applications and resources (compute nodes,
I/O nodes) associated to each running application.

Algorithm 3: Malleability Manager workflow for inter-node malleability using a pool of resources.
1: The Malleability Manager is executed
2: for each running application do
3: Slurm: job execution
4: Intelligent Controller: system status notification including application performance
5: Malleability Manager: application performance analysis
6: Malleability Manager: malleable action
7: Intelligent Controller: malleable action analysis
8: if malleable action is performed then
9: Intelligent Controller: wait for application

10: Intelligent Controller: malleable action forwarding
11: Intelligent Controller: wait for completion
12: Intelligent Controller: application status update
13: end if
14: end for

3.2.2 Inter-node Malleability Using a Pool of Resources

The current implementation of Slurm does not support the dynamic allocation of resources for applications
that are already being executed. In this way, if an application increases its size by means of a malleable
reconfiguration, we need to modify the Slurm or its plugins for allocating on-demand the new compute nodes.
Note that given the complexity of Slurm, the modification of these plugins will take considerable effort and
time. The strategy shown in this section is designed to provide a quick prototype for evaluating the ADMIRE
architecture without the intervention of Slurm. This will permit us to evaluate the efficiency of the techniques
implemented by the Malleability Manager in early stages of the project.

Inter-node malleability enables increasing or decreasing the number of compute nodes allocated to a given
application. Therefore, in contrast to intra-node malleability, such an approach might benefit both the CPU
and I/O performance of the application. Consequently, this approach suits both computation and I/O intensive
applications.

In this strategy, each submitted application will have an extra pool of requested compute nodes that will be
originally unused. For instance, assuming that each compute node has 32 cores and an application is originally
executed with 64 processes, then, when the job is submitted to Slurm, the user will be requested to specify the
requested to specify the required and the maximum number of compute nodes. The maximum number will
indicate the pool size related to the job. Note that both the Intelligent Controller and Malleability Manager
are aware of the actual number of resources assigned to each running application. In this way, if a malleable
reconfiguration is carried out, it will be possible to scale the application up to 96 processes without involving
Slurm. Algorithm 3 shows the Malleability Manager workflow for the inter-node malleability using a pool of
resources.

• Line 1: the Malleability Manager is executed when ADMIRE framework is deployed.

• Line 3: Slurm executes a new job allocating more resources than the ones originally needed by the
application. This information is sent to the Intelligent Controller.

18

CHAPTER 3. ADMIRE ARCHITECTURE ADMIRE

• Line 4: the Intelligent Controller creates and updates the application performance model of each running
application considering, for each one of them, both the allocated resources and the currently used ones. In
addition, the Intelligent Controller produce a system-wide performance forecast considering the models
of all running applications and combining this information with other system-wide performance metrics
collected by the Sensing and Profiling module. This forecast will include potential contention situations
that may occur in the future as well as the prediction of future system performance indicators. All this
information is sent to the Malleability Manager.

• Line 5: the Malleability Manager uses the previous information provided by the Intelligent Controller to
analyze the application performance.

• Line 6: based on this analysis, a decision of performing malleable actions at node-level is made. A
reconfiguration command, that is related to a specific application, is sent to the Intelligent Controller.
This command will include the number of processes that the application has to create or destroy in
certain compute nodes among the originally allocated ones.

• Line 7: the Intelligent Controller will analyze the reconfiguration command from a system holistic per-
spective. This command could be overridden in case of being counterproductive according to the results
of this analysis.

• In case that the reconfiguration command is feasible (Line 8), the Intelligent Controller will wait until
the application is in a safe reconfiguration state (Line 9).

• Line 10: after that, the Intelligent Controller sends the reconfiguration command to the application. This
command will involve the creation/destruction of processes in the compute nodes that are currently used
by the application. Note that Slurm is not involved during the reconfiguration process.

• Line 11: the Intelligent Controller waits for the completion of the application reconfiguration. When this
operation is performed, then the application sends a notification to the Intelligent Controller.

• Line 12: after the completion of the application reconfiguration, the Intelligent Controller updates the
System Status Table that contains the list of all the executing applications and resources (compute nodes
assigned and used, I/O nodes, etc.) associated to each running application.

Algorithm 4: Malleability Manager workflow for inter-node malleability using Slurm.
1: The Malleability Manager is executed
2: for each running application do
3: Slurm: job execution
4: Intelligent Controller: system status notification including application performance
5: Malleability Manager: application performance analysis
6: Malleability Manager: malleable action
7: Intelligent Controller: malleable action analysis
8: if malleable action is performed then
9: Intelligent Controller: for malleable expansion, allocate new resources via Slurm

10: Intelligent Controller: wait for application
11: Intelligent Controller: malleable action forwarding
12: Intelligent Controller: wait for completion
13: Intelligent Controller: for malleable shrinking, release existing resources via Slurm
14: Intelligent Controller: application status update
15: end if
16: end for

19

ADMIRE CHAPTER 3. ADMIRE ARCHITECTURE

3.2.3 Inter-node Malleability Using Slurm

With this approach, a certain application might be executed on an increasing/decreasing number of compute
nodes. Like in the previous approach, by means of malleability, it is possible to change both the application
CPU performance and I/O bandwidth. The main difference with the inter-node malleability using a pool of
resources is that now, Slurm is actively involved in the application reconfiguration. Algorithm 4 shows the
Malleability Manager workflow for inter-node malleability using Slurm.

• Line 1: the Malleability Manager is executed when ADMIRE framework is deployed.

• Line 3: Slurm executes a new job allocating the resources needed by the application. This information is
sent to the Intelligent Controller.

• Line 4: the Intelligent Controller creates and updates the application performance model of each running
application. In addition, the Intelligent Controller produce a system-wide performance forecast con-
sidering the models of all running applications and combining this information with other system-wide
performance metrics collected by the Sensing and Profiling module. This forecast will include potential
contention situations that may occur in the future as well as the prediction of future system performance
indicators. All this information is sent to the Malleability Manager.

• Line 5: the Malleability Manager uses the previous information provided by the Intelligent Controller to
analyze the application performance.

• Line 6: based on this analysis, a decision of performing malleable actions at node-level is made. A
reconfiguration command, that is related to a specific application, is sent to the Intelligent Controller.
This command will include the number of processes that the application has to create or destroy in
certain compute nodes among the originally allocated ones.

• Line 7: the Intelligent Controller will analyze the reconfiguration command from a system holistic per-
spective. This command could be overridden in case of being counterproductive according to the results
of this analysis.

• In case that the reconfiguration command is feasible and the application has to be expanded (Line 8), the
Intelligent Controller ask Slurm to allocate the new resources (compute nodes) involved in the operation
(Line 9).

• Line 10: the Intelligent Controller will wait until the application is in a safe reconfiguration state.

• Line 11: after that, the Intelligent Controller sends the reconfiguration command to the application. This
command will involve the creation/destruction of processes in the compute nodes that are currently used
by the application. Note that Slurm is not involved during the reconfiguration process.

• Line 12: the Intelligent Controller waits for the completion of the application reconfiguration. When this
operation is performed, then the application sends a notification to the Intelligent Controller.

• Line 13: if the application has reduced its size, then the Intelligent Controller notifies Slurm the compute
nodes that are not longer used by the application. After that, Slurm deallocates these resources.

• Line 14: after the completion of the application reconfiguration, the Intelligent Controller updates the
System Status Table that contains the list of all the executing applications and resources (compute nodes
assigned and used, I/O nodes, etc.) associated to each running application.

3.2.4 I/O Malleability

The I/O malleability follows the Algorithm 5, that is similar to the Intra-node Malleability one but interacts
with the I/O Scheduler and does not need any application interaction.

20

CHAPTER 3. ADMIRE ARCHITECTURE ADMIRE

Algorithm 5: Malleability Manager workflow for I/O malleability.
1: The Malleability Manager is executed
2: for each running application do
3: Intelligent Controller: system status notification
4: Malleability Manager: application performance analysis
5: Malleability Manager: malleable action (add or remove ad-hoc storage nodes)
6: Intelligent Controller: malleable action analysis
7: if malleable action is performed then
8: Intelligent Controller: malleable action forwarding
9: I/O Scheduler applies action

10: Intelligent Controller: wait for completion
11: Intelligent Controller: application status update
12: end if
13: end for

• Line 1: the Malleability Manager is executed when ADMIRE framework is deployed.

• Line 3: the Intelligent Controller creates and updates an application performance model for each running
application. In addition, the Intelligent Controller produce a system-wide performance forecast con-
sidering the models of all running applications and combining this information with other system-wide
performance metrics collected by the Sensing and Profiling module. This forecast will include potential
contention situations that may occur in the future, as well as the prediction of future system performance
indicators. All this information is sent to the Malleability Manager.

• Line 4: the Malleability Manager uses the previous information provided by the Intelligent Controller to
analyze the application performance.

• Line 5: based on this analysis, in line 5 a decision of performing malleable actions at job-level is made.
An I/O reconfiguration command, that is related to a specific application, is sent to the Intelligent Con-
troller. This command provides the addition (to increase I/O performance) or the removal (if I/O nodes
should be used for another application, or we detect that the I/O phase does not need parallelism, among
others) of I/O nodes in the ad-hoc storage system.

• Line 6: the Intelligent Controller will analyze the reconfiguration command from a system holistic per-
spective. This command could be overridden in case of being counterproductive, according to the results
of this analysis.

• In case that the reconfiguration command is feasible (Line 7), the Intelligent Controller can issue the
command to the I/O Scheduler (Line 8).

• Line 9: the I/O Scheduler issues the command to the ad-hoc storage and redistribution of data starts
considering the system status and other metrics.

• Line 10: the Intelligent Controller waits for the completion of the ad-hoc storage reconfiguration. When
this operation is completed, the ad-hoc storage system sends a notification to the Intelligent Controller.

• Line 11: after the completion of the storage reconfiguration, the Intelligent Controller updates the System
Status Table that contains a list of all the executing applications and resources (compute nodes, I/O nodes,
etc.) associated to each running application.

3.2.5 Safe Reconfiguration State

Changing the number of resources an application uses while running is a potentially disruptive operation. If not
correctly planned and handled, it may produce application failures or wrong results. A dynamic reconfiguration
plan can only be initiated at particular points in the application execution in which a consistent state can be

21

ADMIRE CHAPTER 3. ADMIRE ARCHITECTURE

reached, and the introduced modifications to the data decomposition/distributions among the computing entities
do not result in information loss or semantics changes.

If such points or regions exist, the application can be dynamically reconfigured either to improve overall
system performance or decrease the number of system resources used. We define such regions of code in the
execution of an application as safe reconfiguration points and the application state reached in those points safe
reconfiguration state.

Typical safe reconfiguration points in parallel applications are global checkpoints, which induce global
barriers among all computing entities. However, in general, identifying reconfiguration-safe regions of code
depends on the parallel programming model used, and they are challenging to discover without active aid from
the application developers. In addition, if the programming model used does not provide transparent dynamic
reconfiguration, the correctness of the reconfiguration plan has to be granted and validated directly by the
application developers.

To partially overcome such difficulties, ADMIRE-enabled applications may directly interact with the Intel-
ligent Controller (IC) through an API (described in the deliverable D6.1) to provide, among others, information
about reconfiguration-safe points in which reconfiguration commands, coming from the IC, may be safely
executed by the application.

22

CHAPTER 4. APPLICATION PROGRAMMING INTERFACE ADMIRE

Chapter 4

Application programming interface

WP5

Monitoring

Manager

WP4

I/O Scheduler

WP3

Malleability Manager

WP6

Intelligent

Controller

WP2

Ad-hoc Storage

SLURM

ID13-Push (WP7)

ID12-Push

(WP2)

Back-end storage

ID8-Push (WP2)

ID7-Push (WP2)

ID9-Push (WP4)

ID14-Push (WP6)

ID15-Push/Pull (WP6)

WP5

Sensing and Profiling

ID16-Push/Pull (WP6)
ID17-Pull (WP5)

ID18-Push

(WP2)

ID19: push

(WP5)

Distributed

Database

IC

WP7

ApplicationsA
D

M
IR

E

a
p
p

lic
a

ti
o
n

m
a

n
a

g
e

r

Performance

Database

HSM data flow

ID10-Push (WP2)

Figure 4.1: ADMIRE controlflow between the components.

Figure 4.1 shows the control flow diagram of the overall ADMIRE architecture. We can observe that the
Malleability Manager only communicates with the Intelligent Controller, although, the information provided
by the Intelligent Controller will be forwarded to the Slurm, the I/O scheduler, and the applications (via the
ADMIRE application manager). Since there are a tight collaboration between the Intelligent Controller and the
Malleability Manager, considering the readability of the whole ADMIRE architecture, we preferred to discuss
some of the interfaces in the deliverable D6.1. Consequently, in this section, we would explain a single method
that is less coupled with the Intelligent controller and include the remaining methods as part of APIs in D6.1.

4.1 Interface of malleability manager

As shown in the Figure 4.1), there are two communication channels between the Malleability Manager and
the Intelligent Controller. The first channel, the function ADM_getSystemStatus (ID1 in the Figure 4.1)
provides the Malleability Manager with information collected and processed by the Intelligent Controller. This
information includes platform and application status information, performance models, and user hints, which
offer a global view of the current state of the system, as well as a forecast of future platform states. This function

23

ADMIRE CHAPTER 4. APPLICATION PROGRAMMING INTERFACE

is related to the Intelligent Controller and is depicted in the deliverable D6.1. The second channel, function
ADM_suggestScheduleSolution (ID2 in the Figure 4.1) includes the job and I/O malleable decisions
made by the Malleability Manager for certain running applications and ad hoc storage systems, respectively.
A description of this interface is shown below. We are considering two possible implementations for the
Malleability Manager: as an independent thread/process or as a library linked with the Intelligent Controller
code. Note that the API described in this section is valid for both alternatives.

Name: ADM_suggestScheduleSolution
input : struct scheduleSolution. Structure with the combined job and ad hoc storage scheduler solution.

It contains the following fields:

• applicationID. Application subjected to be reconfigured.

• adhocStorageID. Ad hoc storage subjected to be reconfigured.

• assignedPartition. Preferred partition of Slurm to run the job.

• assignedNodes. List of compute nodes involved in the job reconfiguration.

• assignedProcessesPerNode. Number of processes that have to be created (if positive) or
removed (if negative) for each one of the previous nodes.

• assignedThreadsPerNode. Number of threads that have to be created (positive values) or
removes (negative values) for each one of the previous nodes.

• assignedBandwidth. Assigned I/O bandwidth for the considered application.

• jobSchedule. suggested I/O scheduling policy for the application.

• adhocStorageNodes. List of compute nodes involved in the ad hoc storage reconfiguration.

• adhocStorageMalleabilityRequest. Number of I/O storage instances that have to be created
(positive values) or removed (negative values) for each one of the previous nodes.

output: int exitValue: 0 success, -1 failure
Description:
This function provides the schedule decision including job and I/O malleability to the Intelligent
Controller

24

CHAPTER 4. APPLICATION PROGRAMMING INTERFACE ADMIRE

4.2 UML diagram

Figure 4.2 shows the UML diagram of the functions provided by the Malleability Manager. The diagram
illustrates the API definitions related to the Intelligent Controller.

Intelligent Controller

SLURM
I/O Scheduler

Ad hoc storage systems

Parallel file system

Malleability Manager

- On job start, run pre-job actions
- During job, run in-job actions (triggered by user)

NORNS

Date movement
&

HSM

Control ad hoc storage system,
malleability, and QoS

Control stage-in/out

Interaction between
IC and users

Control QoS

Sensing and
profiling

System, storage
and application

state

Malleability decision

System, storage
and application

state

job queue, system, application,
I/O states, QoS, user hints

ad hoc storage system config info

I/O scheduler controller

WP3 API Intelligent Controller

+ ADM_suggestScheduleSolution(scheduleSolution, output)

ADMIRE
application manager

Interaction between
IC and applications

Run-time communication controller

Application communication controller

Figure 4.2: UML diagram related to WP3 API.

25

ADMIRE CHAPTER 5. CONCLUSION

Chapter 5

Conclusion

To efficiently benefit from the capacity provided by all HPC elements, such as multi-tiered storage, the AD-
MIRE project aims at providing a software stack for execution of data-intensive applications in exascale HPC
environments. Our proposed solution would be a complete framework including application model, monitoring,
performance modeling, resource management and job scheduling. Malleability management is an important
part of the framework that focuses on balancing computation and storage requirements of data-intensive HPC
applications.

To attain an extensive malleability management process, developing a runtime mechanism to provide mal-
leability, at the resource management level, is the first step. Then we need to design and implement malleability
protocol(s) for collaborating ad hoc parallel storage systems and I/O scheduler. By providing a set of APIs to
facilitate malleability in the application level we will complete the task.

In this document, we first presented the background and technologies needed to better understand the prob-
lem. Then considering the role of malleability in ADMIRE framework, we provided the malleability require-
ments. According to position of malleability manager and its communication with the other components in
ADMIRE architecture, we proposed a set of APIs.

26

APPENDIX A. TERMINOLOGY ADMIRE

Appendix A

Terminology

• Ad hoc Storage System, ephemeral storage system that only exists in a determined period, i.e. during a
job’s execution.

• CLI, command line interface.

• DRAM, dynamic random-access memory.

• EBNF, Extended Backus–Naur Form is a family of metasyntax notations, any of which can be used
to express a context-free grammar. EBNF is used to make a formal description of a formal language
such as a computer programming language. They are extensions of the basic Backus–Naur form (BNF)
metasyntax notation.

• In situ data, processing the data where it is originated.

• In transit data, processing the data when it is moved.

• NORNS, data transfer service for HPC developed at BSC.

• NVM, non-volatile memory.

• PFS, parallel file system.

• POSIX, Portable Operating System Interface, family of standardized functions.

• QoS, Quality of Service.

• RDMA, remote direct memory access.

• RPC, remote procedure call.

• Slurm, job submission system widely used.

• SSD, solid state drive.

• Object store, persistent storage system where data are stored not as file but as objects. In its canonical im-
plementation Object are immutable and the API is limited to PUT, GET and DELETE. More sophistical
object store have been developed on the ground of these concepts such as ADMIRE Data Clay.

• Disaggregated Storage, storage systems where all the storage capabilities are centralized in dedicated
network attached storage servers. This approach allows connected compute nodes to access a storage
capacity without constraints related to the capacity of a single storage device.

• PFS, Parallel File System, type of distributed file system supporting a global namespace and spread
across multiple storage servers.

27

ADMIRE APPENDIX A. TERMINOLOGY

• Node Local Storage, ability for a compute server to store persistent data on physically local storage
devices.

• Ephemeral Storage, file systems which are making persistent (surviving across system reboot) but which
are designed to be deployed and destroyed over a limited period of time, from few hours up to few
months.

• API, Application Programming Interface, a mechanism that enables an application or service to access a
resource within another application or service. The application or service doing the accessing is called
the client, and the application or service containing the resource is called the server.

• Rest API, such APIs can be developed without constraint and the programming language and support
a variety of data formats. The only requirement is that they align to the following six REST design
principles - Uniform interface, Client-server decoupling, Statelessness, Cacheability, Code on demand
(optional).

• OSS, an Object Store Server in the Lustre terminology is a computing server in charge of managing the
ingest of data, including generation of the data protection, and ship these data to the correct Object Store
Target.

• OST, Object Store Target in the Lustre terminology is a storage server accommodating potentially a large
number of hard drives and/or NMVes. The OST write the data received from the OSS and make them
persistent.

• MDS, MetaData Server.

• MDT, MetaData Target.

• Stripe, an elementary chunk of data according to the Lustre terminology. A large file is split in multiple
stripes and each stripe is sent to an individual OST. The higher is the number of stride, the higher is the
parallelism.

• Monitoring Manager,

• Intelligent Controller,

• Monitoring Daemon,

• TBON, Tree Based Overlay Network,

• PromQL, the query language supported by the Prometheus database. Syntax, documentation and exam-
ples are available here: https://prometheus.io/docs/prometheus/latest/querying.

28

https://prometheus.io/docs/prometheus/latest/querying

BIBLIOGRAPHY ADMIRE

Bibliography

[1] Abdelhalim Amer, Pavan Balaji, Wesley Bland, William Gropp, Yanfei Guo, Rob Latham, Huiwei Lu,
Lena Oden, Antonio J. Pe~na, Ken Raffenetti, Sangmin Seo, Min Si, Rajeev Thakur, Junchao Zhang,
and Xin Zhao. MPICH User’s Guide. Mathematics and Computer Science Division, Argonne National
Laboratory, November 10, 2017.

[2] Mohak Chadha, Jophin John, and Michael Gerndt. Extending slurm for dynamic resource-aware adaptive
batch scheduling. In 2020 IEEE 27th International Conference on High Performance Computing, Data,
and Analytics (HiPC), pages 223–232, 2020. doi:10.1109/HiPC50609.2020.00036.

[3] Isaías Comprés, Ao Mo-Hellenbrand, Michael Gerndt, and Hans-Joachim Bungartz. Infrastructure and
API extensions for elastic execution of MPI applications. In Proceedings of the 23rd European MPI
Users’ Group Meeting, EuroMPI 2016, page 82–97, New York, NY, USA, 2016. Association for Com-
puting Machinery. URL: https://doi.org/10.1145/2966884.2966917, doi:10.1145/
2966884.2966917.

[4] EuroHPC. Programming environment for european exascale systems, 2021. URL: https://
deep-projects.eu/.

[5] EuroHPC. Regale - open architecture for exascale supercomputers, 2021. URL: https://
regale-project.eu/.

[6] Dror G. Feitelson and Larry Rudolph. Towards convergence in job schedulers for parallel supercomputers.
In Workshop on Job Scheduling Strategies for Parallel Processing, pages 1–26, 1996.

[7] Abhishek Gupta, Bilge Acun, Osman Sarood, and Laxmikant V. Kalé. Towards realizing the potential of
malleable jobs. In 2014 21st International Conference on High Performance Computing (HiPC), pages
1–10, 2014. doi:10.1109/HiPC.2014.7116905.

[8] Chao Huang, Orion Lawlor, and L. V. Kalé. Adaptive mpi. Springer Lecture Notes in Computer Science,
2958(3):1–43, 2004. URL: https://doi.org/10.1007/978-3-540-24644-2_20.

[9] Philip J. Mucci, Shirley Browne, Christine Deane, and George Ho. PAPI: A Portable Interface to Hard-
ware Performance Counters. In In Proceedings of the Department of Defense HPCMP Users Group
Conference, pages 7–10, 1999.

[10] SchedMD. Slurm APIs, 11 2019. URL: https://slurm.schedmd.com/api.html.

[11] SchedMD. Slurm workload manager, 8 2021. URL: https://slurm.schedmd.com/.

[12] Andy B. Yoo, Morris A. Jette, and Mark Grondona. Slurm: Simple linux utility for resource manage-
ment. In Dror Feitelson, Larry Rudolph, and Uwe Schwiegelshohn, editors, Job Scheduling Strategies for
Parallel Processing, pages 44–60, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

29

http://dx.doi.org/10.1109/HiPC50609.2020.00036
https://doi.org/10.1145/2966884.2966917
http://dx.doi.org/10.1145/2966884.2966917
http://dx.doi.org/10.1145/2966884.2966917
https://deep-projects.eu/
https://deep-projects.eu/
https://regale-project.eu/
https://regale-project.eu/
http://dx.doi.org/10.1109/HiPC.2014.7116905
https://doi.org/10.1007/978-3-540-24644-2_20
https://slurm.schedmd.com/api.html
https://slurm.schedmd.com/

	Introduction
	Background
	Malleability in HPC
	Flex-MPI
	Monitoring
	Dynamic process management
	Load balancing
	Data redistribution
	External controller

	MPI extension to support malleable jobs
	Slurm
	Overview
	Plugins
	Malleability extension

	ADMIRE Architecture
	WP3 Focus
	Malleability Manager Workflow
	Intra-node malleability
	Inter-node Malleability Using a Pool of Resources
	Inter-node Malleability Using Slurm
	I/O Malleability
	Safe Reconfiguration State

	Application programming interface
	Interface of malleability manager
	UML diagram

	Conclusion
	Appendix Terminology

