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Executive Summary

The I/O Scheduler is a component in ADMIRE whose primary responsibility is controlling the movement of
datasets between different storage backends, with the goal of reducing the overall I/O contention of an HPC
cluster. These data scheduling decisions must take into account the particular mix of workloads currently in
execution so that they respond to the needs of the cluster. To capture these needs, the I/O Scheduler must
establish suitable communication channels with all components in the ADMIRE framework, that is, jobs and
applications, ad hoc storage systems, the long-term parallel file system (PFS), and other system resources such
as compute nodes and the network fabric.

As an example, the Job Scheduler could allow users of the system to provide a list describing the datasets
consumed and produced by a job, which would be considered by the I/O Scheduler to schedule the required
data transfers appropriately. Similarly, the Intelligent Controller could provide monitoring information about
the state of the system, which would allow the I/O Scheduler to enforce QoS constraints for applications, ad-
hoc storage systems and the network, thus reducing I/O congestion in the process. Finally, applications could
directly ask the I/O Scheduler to transfer datasets from the PFS to node-local storage (or vice versa), and the
I/O Scheduler would queue these transfers and decide the best moment to execute them.

To achieve this level of communication and the I/O Scheduler primary goals, it is very important that a
flexible enough API is provided that allows capturing the I/O requirements derived from these interactions
and transform them into useful work. Thus, this deliverable describes the work done during Tasks 4.1 and
4.3 to capture these requirements, it also proposes an initial version of the I/O Scheduler API to support these
interactions as well as the necessary Slurm user interface.
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ADMIRE Introduction

1. Introduction

Traditionally, the design of large-scale HPC infrastructures has been focused on maximising parallel processing
power while reducing energy consumption. Nevertheless, the advent of data-intensive computing applications
in recent years, including high-performance data analytics (HPDA) and deep learning (DL), as well a huge in-
crease in the data requirements in scientific computing is changing this compute-centric view. As a result, there
is a growing agreement in the HPC community that large-scale supercomputers will act as key data process-
ing nodes in the emerging distributed computing environment integrating HPC and data-intensive computing
resources [4, 14].

This growing demand for data processing is accompanied by disruptive technological progress of the under-
lying storage technologies. As a result, upcoming exascale HPC systems are transitioning from a simple HPC
storage architecture, consisting of a parallel backend file system and archives often based on tapes, towards a
multi-tier storage hierarchy that includes node-local non-volatile main memory (NVMM) with a performance
close to DRAM, NVMe-based SSDs inside compute nodes with a bandwidth of many GBytes/s, SSDs on I/O
nodes, parallel file systems, campaign storage, and archival storage (see Figure 1.1). Unfortunately, there is a
significant lack of appropriate interfaces for managing this I/O stack, which means that accessing the different
storage tiers is not part of any scheduling decision. Thus, data transfers between the different storage tiers
are managed explicitly by users, which leads to uncoordinated accesses to storage, redundant data movement,
increased energy consumption, and delayed end-to-end performance. Furthermore, backend storage systems
can be easily flooded by a few compute nodes performing many concurrent data or metadata requests. This
means that it is necessary to control the applications’ data and metadata flows by setting (and enforcing) QoS
constraints that can prevent a single application from overloading the shared file system, while guaranteeing a
predictable performance at the same time.

To address these issues, WP4 will develop an I/O Scheduler component that will coordinate and schedule
the data flows between the shared backend parallel file system and the ad hoc storage systems, executing data
transfers as necessary according to the information gathered by other components in the ADMIRE framework.
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Figure 1.1: The complexity of the storage hierarchy in modern HPC systems.
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2. The I/O Scheduler

WP4 will develop an I/O Scheduler with control point support that will coordinate direct and indirect inputs
from the Intelligent Controller, the Job Scheduler, and the Malleability Manager to provide QoS-aware data
scheduling. Functionalities to support in-situ/in-transit data transformations will be provided, and using low-
power processors for such tasks will be researched. Given these requirements, and in order to provide context
for Section 3, this section describes the principal responsibilities and functionalities of the I/O Scheduler, as
well as its functioning context as defined in a co-design process with the other WPs.

2.1 General responsibilities

The main responsibility of the I/O Scheduler component is to control (and often execute) the movement of
datasets (i.e. files or objects) between storage tiers with the goals of accelerating data processing by maintaining
data locality as well as reducing I/O contention to the PFS. This kind of contention typically occurs due to HPC
applications using the PFS for their normal I/O operation (e.g. reading configuration files, reading input data,
writing results, checking file attributes, checkpointing opertions, etc.). Even if these operations often follow
fairly well defined patterns per application, such patterns end up diluted when considering all applications as
a whole and the PFS perception is that it is receiving a random mix of unrelated I/O operations that are very
difficult to optimise. The I/O Scheduler will address this by appropriately scheduling data staging into Ad hoc
Storage Systems, combined with defining and enforcing QoS constraints per application. Data staging changes
PFS I/O from a random mix of unrelated operations to well-defined sequential streams of read-only or write-
only operations, while keeping normal application I/O constrained within node-local storage. QoS enforcement
makes it so that a single application cannot overwhelm the PFS and its I/O capabilities can be distributed fairly.

More concretely, the I/O Scheduler implementation offered by ADMIRE has the following requirements:

1. The I/O Scheduler needs to take into account how data is going to be accessed, and give a higher priority
to data shared by several compute nodes in order to reduce contention as much as possible.

2. The I/O Scheduler must offer mechanisms to support the definition and enforcement of QoS constraints
for the I/O of an application. This means that it must be possible to set limits on e.g. the amount of
metadata operations, the number of I/Os per second (IOPS), the bandwidth consumed w.r.t. the shared
PFS, or even the network congestion it generates.

3. The I/O Scheduler must support multiple storage tiers, including at least the backend parallel file system,
node-specific flash storage, and Storage Class Memory attached to the CPUs’ memory buses. It will also
allow scheduling bulk data transfers between the different storage tiers, and will manage fine-grained
accesses from one storage tier to another, following the aforementioned QoS guarantees.

4. The I/O Scheduler (possibly in cooperation with the Job Scheduler) must offer clients the possibility of
executing arbitrary in situ/in transit codes on a job’s input or output data. For instance, data transforma-
tion plugins may be included into the I/O workflow so that they are applied while a batch job input data
is transferred to the selected compute nodes, or so that its output results are compressed in-place prior to
staging them out to the shared backend storage system. In situ processing further allows data-intensive
analysis tasks to co-exist and be co-scheduled with simulation tasks.
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5. The I/O Scheduler must include several scheduling policies with different levels of aggressiveness, given
that applications may benefit differently from each policy.

Thus, we consider that I/O scheduling is needed in scenarios where normal I/O usage ends up causing
contention and causes HPC applications to run for longer than they would have if they had run in isolation.
Additionally, it was also decided that the I/O Scheduler will be responsible for executing all tasks related to
starting up and tearing down an Ad hoc Storage System in response to requests by the Job Scheduler. The
rationale behind this decision is that since Ad hoc Storage Systems are ephemeral in nature (i.e. they live as
long as the job/jobs that need them), they typically must to be started before a job starts and they also need to
be kept running after it ends. This is required, firstly, so that it is possible to stage data into them. Secondly,
the Ad hoc Storage System may be kept running for subsequent jobs in a workflow. And thirdly, it may also
be necessary to complete any pending data transfers from the Ad hoc Storage System to the PFS once all jobs
have completed. Since the I/O Scheduler will have first hand knowledge of when these transfer tasks complete,
and will also have facilities to deploy and run code on-demand, it is simpler to let it take care of this.

2.2 ADMIRE architecture and information flow

In order to fulfil the aforementioned responsibilities, the I/O Scheduler must collaborate with other components
in the ADMIRE framework. To clarify these interactions, Figure 2.1 depicts how the consortium currently
envisions the flow of information in the framework, and the place the I/O Scheduler has in it. The HPC storage
subsystem is represented on the upper part of the figure and consists of the Ad hoc and Backend storage systems.
The former provides each application a specialised high-performance storage tier tailored to the application’s
characteristics, while the latter represents the main parallel file system used by the HPC platform (e.g. Lustre,
GPFS, etc.). Both storage tiers are coordinated by the I/O scheduler, which is responsible for the deployment
and configuration of the ad-hoc storage, the specification of Quality-of-Service metrics and the implementation
of I/O scheduling policies. In order to make appropriate I/O scheduling decisions, the I/O Scheduler requires
information about both the current state of the HPC system as well as the expected I/O that an application is
going to perform. As shown by the figure, information about an application comes primarily from the Job
Scheduler, the Malleability Manager, and the applications themselves:

• The Job Scheduler (e.g. Slurm) will be the front-end component with which the end users of the frame-
work will interact in order to run their applications. As such, its main responsibilities in ADMIRE
will be to keep track of the current workload of the system (e.g. job queue state in the figure), as well
as to collect any user hints about application I/O and datasets usage that can help improve the overall
performance of the system.

• The Malleability Manager (WP3) is a component in the ADMIRE framework that is responsible for
providing elasticity in the allocation of resources for a job. As such, it will be responsible for making
decisions that imply dynamically altering the amount of resources assigned to a job, which may heavily
affect the proposed I/O scheduling solutions.

• Applications themselves will also be able to communicate additional information about an application
I/O by making use of the APIs provided by the framework. This information can be really valuable for
the framework since it will come from application developers themselves rather than from end users.
Nevertheless, note that obtaining this information will require applications to be modified to use APIs,
which means that the ADMIRE framework cannot rely on having this information always available in
order to function properly.

Additionally, both applications and storage tiers are monitored by the Sensing and Profiling (WP5) compo-
nent, which is responsible for collecting system-wide performance metrics at node level that will be processed
and aggregated by the Monitoring Manager (WP5) in order to produce performance models for applications
and storage tiers. All this information will be collected by the Intelligent Controller (WP6) that will use it to
predict potential performance bottlenecks in the system. This means that the main source of information for
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Figure 2.1: Information flow within the ADMIRE framework. The Intelligent Controller acts as the nexus
point for collecting, processing, and distributing all the information required for the proper functioning of the
ADMIRE.

the I/O Scheduler to perform its tasks will be the Intelligent Controller. To develop these mechanisms, the
Intelligent Controller will be accessed through a common API that will offer mechanisms to reserve bandwidth
on the level of assigned remote procedure calls (RPCs) and which will also offer the possibility to link compute
tasks to data transfers.

2.3 Specific requirements

In order for the I/O Scheduler to reduce congestion to the PFS and enable a better usage of the HPC cluster’s
I/O stack, it needs to be able to capture information from end users I/O usage, as well as to offer a set of
particular functionalities to successfully play its part in the ADMIRE framework. This section describes these
requirements in detail.

2.3.1 I/O hints

As mentioned, clients of the ADMIRE framework must be able to define the I/O requirements for their ap-
plications either when requesting resource allocations from the Job Scheduler or via the ADMIRE APIs in
ADMIRE-enabled applications. The I/O Scheduler must then expose an API that allows the materialisation
of I/O hints in the Job Scheduler. As part of the ADMIRE project, WP4 will ensure that the following I/O
parameters can be communicated to the I/O Scheduler:

• Stage-in datasets: This parameter will allow users of the framework to precisely identify which datasets
an HPC job will consume in order to produce meaningful results. This is helpful to the I/O Scheduler in
order to kickstart the transfer process from the PFS into the desired Ad hoc Storage System, so that data
can be on location before the job starts.

• Stage-out datasets: This parameter will allow users of the framework to precisely identify the expected
datasets generated from an HPC job, as well as the location in the PFS where they should be stored.
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This will be helpful to the I/O Scheduler in several ways: firstly, it will allow detecting dependencies
between producer-consumer jobs; secondly, intermediate datasets produced by the job in an Ad hoc
Storage System that had not been tagged for PFS storage will be considered as temporary by default,
being deleted when the job completes; thirdly, it will allow the I/O Scheduler to determine what to do
with the produced datasets, i.e., transfer them to the PFS for persistent storage or keep them in place/move
them to other compute nodes for subsequent job executions.

• Storage tiers: The previous two arguments will include information that allows users to define the
appropriate storage tiers where datasets reside.

• Data distribution pattern: This parameter will allow users of the framework to define how a dataset
should be distributed between the requested compute nodes (e.g. one-to-one, one-to-many, many-to-
many), as well as whether the dataset’s data should be replicated in each target or spliced following a
distribution pattern. This will allow the I/O Scheduler to choose the most efficient method for transferring
data to its intended destination.

• I/O access patterns and access mode: This will allow users to define if a dataset is going to be used in
a read-only, write-only, read-write, or read-modify-write manner. Additionally, it will also be possible
to define whether a dataset is intended to be privately consumed or shared by several applications in a
workflow.

2.3.2 QoS constraints

The goal of Quality of Service in ADMIRE’s I/O performance management is to throttle I/O performance
to prevent the excessive allocation of I/O resources to a single process/group of processes, with the purpose
of avoiding diminished performance due to starvation for the remaining active process in the system. This
interpretation of QoS remains less ambitious than a more strict definition of QoS which is to guarantee a level of
performance or share of I/O resources to a given process or group of processes. As mentioned, the management
of Resources in Job Schedulers (both Slurm or PBS) typically take care of a fair allocation of system resources
such as computation and memory but typically exclude the I/O [18]. This situation is mitigated by the ability of
some storage systems to cap the available capacity per user or per group/project using quotas, but this feature
misses the control of the data and metadata traffic during a time frame.

This situation has been acknowledged by the Lustre community and a more complete QoS implementation
is under development for it. This implementation, often referred as LIME [23], is based on the notion of a
Token Bucket Filter (TBF). The key idea of TBF is to control the rate of network service from the storage
servers based on the client’s identity. As Lustre is a network attached file system, all demands both in terms
of data and metadata are expressed by RPCs to storage servers from compute clients. Nevertheless, the lack
of orchestration remains as one of the main difficulties for delivering QoS for a PFS. All traffic, both data and
metadata, is dispatched between multiple servers, which means that each server only has a partial knowledge
of the consumption of resources. This will be addressed in ADMIRE with WP7’s Intelligent Controller. The
panoptic vision of the system state offered by the Intelligent Controller allows implementing efficient QoS
policies. With a centralised controller, it is possible to leverage existing throttling mechanisms in Lustre or
other PFSs in order to guarantee a level of resource to specific processes. Thus, in order to implement these
mechanisms effectively, it important for the I/O Scheduler to capture the QoS classes and constraints defined
by the Intelligent Controller in order to 1) convey them to the Ad hoc Storage Systems, and 2) enforce them
when transferring data between tiers.

Note that we consider that the target of a QoS class/constraint can be a dataset, a compute node or an
application. We currently envision that the following QoS classes will need to be supported:

• I/O Data Rate: The data rate QoS class allows restricting the amount of data being transferred between
storage devices (including RAM) during a certain unit of time. This QoS class allows setting upper limits
to the I/O bandwidth used by an application, which is intended to prevent an application with high data
production from saturating the I/O channel, which would reduce the effective I/O rate experienced by
other applications, thus hindering overall system performance.
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• I/O Operation Rate: The operation rate QoS class allows restricting the amount of operations per unit
of time being emitted. This, for instance, allows restricting the metadata IOPs emitted by an application,
which is often the cause of increased I/O latency for HPC applications.

• Network Data Rate: This QoS class is similar to the I/O Data Rate class, but applied to the network
resource rather than to I/O. This class allows restricting the amount of network bandwidth used by a
compute node, or an application for data transfers.

Though this is the minimum set of classes that the I/O Scheduler needs to perform its work effectively, the
API we propose in Section 3.4 has been designed in a generic manner, so that the implementation can be easily
extended with future QoS classes without having to alter the API.

2.3.3 Asynchronous data movement

As described, the I/O Scheduler is responsible for executing and tracking data transfer tasks to move datasets
between storage tiers. For efficiency’s sake, it makes sense to perform these data transfers in an asynchronous
manner, so that the initiators (i.e. applications and other ADMIRE components) don’t need to wait for the
transfers to be completed and may carry on with other tasks. To this end, ADMIRE will integrate a data
transfer service for HPC clusters called NORNS [15] that already fulfils most of the necessary requirements.

NORNS1 is an infrastructure service developed by BSC that allows moving data between different storage
backends in a one-to-one fashion, including file-to-file data transfers via POSIX I/O, as well as file-to-memory
and memory-to-memory transfers via RDMA. It was developed in the context of the NEXTGenIO 2 European
project to provide a middleware to Slurm for the orchestration of asynchronous data transfers between the
different storage layers in an HPC cluster. Its design goals are the following:

• To simplify the management of the increasingly heterogeneous I/O stack by offering interfaces for ab-
stracting and controlling the different storage tiers.

• To hide the complexity of each specific tier by providing a unified API for asynchronously transferring
data, so that NORNS clients (Slurm and applications in NEXTGenIO) do not need to bother with the
technical details to execute such transfers efficiently.

• To allow clients to start, monitor, and manage transfers between storage tiers, so that it is possible to
control and account such transfers.

• To execute data transfers as efficiently as possible, taking advantage of fast interconnects and native APIs
where available.

NORNS provides facilities to system administrators to expose the cluster’s storage architecture to end users
and applications, and also offers APIs for creating and monitoring asynchronous data transfers between these
local and remote layers. With an appropriate Slurm job description file, the user can create I/O tasks to stage-
in/stage-out data from/to the PFS and into another storage tier (e.g. an Ad hoc Storage System in ADMIRE)
when the workflow starts/ends, keep persistent data on node-local storage to feed upcoming phases or move
data directly between compute nodes to match future job schedules.

Since its main goal is to keep track of any data staging required to run a job, its architecture has been
designed to be tightly coupled with job schedulers. As shown in Figure 2.2, the NORNS service is currently
composed of the following components:

• A resource control daemon (urd) which runs at each compute node. Its responsibilities are to coordinate
with any administrative clients (e.g. the Job Scheduler or the Intelligent Controller) to manage and track
the storage tiers spaces defined for each job. It is also the component in charge of actually accepting,
validating, executing, and monitoring all I/O tasks affecting this compute node.

1https://storage.bsc.es/gitlab/hpc/norns
2https://www.nextgenio.eu
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Figure 2.2: NORNS service architecture and component interaction.

• A shared library libnornsctl.so implementing a control API (nornsctl). This API offers admin-
istrative interfaces so that administrative clients can control the transfer daemon, query its state, define
the appropriate storage tiers accessible by each job, and submit/control I/O tasks.

• A shared library libnorns.so implementing a user-level norns API. This API allows parallel ap-
plications to query information about the storage tiers defined for them, and also offers interfaces so that
they can submit and control I/O tasks between such tiers.

Another advantage of the service is that it is built around the ANL’s Mercury3, a highly scalable RPC library
that offers a common interface for several HPC fabrics such as TCP, InfiniBand, Verbs, or Omni-Path. NORNS,
thus, provides a solid framework for the development of scalable data-aware scheduling algorithms to arbitrate
data transfers and it makes sense to use it as the workhorse for the I/O Scheduler, as well as to leverage its APIs
in the definition of the APIs proposed in this deliverable.

2.3.4 In situ and in transit data operations

ADMIRE’s I/O Scheduler must also include facilities that allow the execution of in situ and in transit trans-
formations on data, and its API must reflect this. Traditionally, data visualisation, analysis and transformation
has been post hoc processed, i.e., simulations save data through the I/O system to permanent storage and the
visualisation, analysis or transformation programs load this data, again using the I/O system. With in situ pro-
cessing, the load on the I/O system can be drastically reduced, as data ends up being processed in the same
compute nodes where it is generated, without having to involve any I/O tiers for permanent storage. With in
transit processing, however, operations are applied on data when a simulation transfers it over the network to a
separate set of visualisation nodes for processing.

While the in transit model may seem as less efficient when compared to the in situ model, this kind of data
processing allows having a set of dedicated visualisation nodes on the same machine as the simulation, which
allows visualisation routines to run concurrently with simulation code, but not impacting its runtime as with in
situ methods. Moreover, it has been shown that the effects of storage latency can be hidden by streaming data

3https://mochi.readthedocs.io
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writes to the separate allocation of staging nodes, and letting them run while the simulation continues [1,16,17].
Nevertheless, before in transit processing can take place, the data must be sent from the simulation to a resource
for processing. This data dump can saturate the network, and could even cause a slowdown in the simulation
while it sends the data off over the network. Even so, this data dump has the potential to end up moving far less
data, in total vs. using an in situ approach for data processing. The reason is that visualisation allocations are
typically much smaller than simulation node allocations, meaning that communication takes place over a much
smaller domain.

Furthermore, the in situ paradigm is constrained to use the concurrency of the allocated resource, which
typically means the allocation for the entire simulation. This level of concurrency can actually be a bottleneck
for data processing routines that require significant communication (e.g. particle tracking, etc), or algorithms
that don’t scale up to the level of simulation codes (e.g. hundreds of thousands of cores). Conversely, in a
in transit paradigm, the concurrency of the data processing resource can be appropriately configured for the
tasks to be performed. Algorithms that require significant synchronisation and communication will generally
perform much better at lower levels of concurrency, and this can be used to optimise the performance. Thus,
it is not clear whether one model is superior to the other and it makes sense to support both in ADMIRE for
different tasks.

2.3.4.1 Requirements

With the increasing interest in this kind of processing, a number of frameworks have been developed, and thus
it is sensible to reuse their concepts in the I/O Scheduler API, or even integrate one of such frameworks in
ADMIRE if at all possible. Interestingly, frameworks for in situ/in transit data processing can be classified
along the six axes depicted by Figure 2.3 depending on how they function, and hence it makes sense to use the
same axes to describe the kind of data processing framework that we want the I/O Scheduler to support:

1. The integration type axis refers to how visualisation and analysis routines are integrated into the simu-
lation code. In most implementations, the simulation code is aware of the integration and makes calls
in support of data marshalling, but it is also possible to integrate in situ routines without the simulation
being aware (e.g. application-aware vs. application-unaware).

2. The proximity type axis characterises how close the visualisation and analysis routines are to the data
(e.g. on-node vs. off-node).

3. The access axis refers to how the simulation makes data available to visualisation and analysis routines.
The main options are direct access (where in situ routines share the same logical memory space as
simulation code) and indirect access (where in situ routines run in a distinct logical memory space from
simulation code).

4. The division of execution axis considers how compute resources are shared between simulation and in situ
routines. The two main options are space division (a subset of compute resources is exclusively dedicated
to in situ routines) and time division (some or all compute resources alternate between advancing the
simulation and visualisation).

5. The operation controls axis describes the mechanism for selecting which operations are executed during
run-time (e.g. automatic vs. human-in-the-loop).

6. The output type axis describes which operations the framework performs on simulation data before it is
output. Three major categories can be inferred for this axis: subset (a subset of the output data is selected,
and the rest is discarded), transform (one or more operations are performed on each element of the data),
and derived (operations generate new data of a different nature than the input).

Taking these six axes into consideration, the I/O Scheduler features for in situ/in transit processing that
the consortium wants to achieve in ADMIRE, as well as the rationale for each decision, are summarised by
Table 2.1.
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Features Rationale

Integration Type application-aware,
application-unaware

The in situ facilities provided by the I/O Scheduler
must be offered through the ADMIRE APIs for
ADMIRE-enabled applications. Nevertheless, legacy
applications that don’t make explicit use of the APIs
should still be able to benefit from the functionalities
to a certain extent through the extensions for the Job
Scheduler.

Proximity on-node, off-ode In order to reduce contention as much as possible, the
I/O Scheduler will execute in situ routines in the same
nodes where the data is generated. For in transit
models, routines may be executed in either source or
destination nodes.

Access direct access Direct access is preferred since on-node execution is
more aligned with ADMIRE objectives.

Division of Execution time, space Dedicating subsets of compute nodes for data
processing routines or using all compute nodes to
alternate between simulation and data processing are
both acceptable strategies for ADMIRE. During the
implementation phase it will be evaluated whether it is
possible to support both within the scope of the project.

Operation Controls automatic For performance sake, how and when data processing
routines are executed should be a decision made by the
ADMIRE framework.

Output Type subset, transform,
derived

At this moment it doesn’t seem to make sense to limit
the scope of what data processing routines could do
with the data. Thus all options should be supported.

Table 2.1: Desired features for the data processing framework in ADMIRE.

2.3.4.2 Existing frameworks

While designing the API presented in Section 3.5, several existing in situ data processing frameworks were
considered, as integrating an already established and well known API would facilitate the adoption of the
ADMIRE framework. In the following, we describe the frameworks considered for integration, some of which
are more generic in nature than others:

• VisIt (+ LibSim): VisIt [7, 22] is an open source visualisation and analysis software for end users. VisIt
is designed to work as a distributed system: it has a server that utilises parallel compute capabilities
coupled with the client running as the user interface. In addition, VisIt can run in situ via the LibSim
library, enabling simulation code to transfer the data (in VTK format) to the VisIt Server, which the VisIt
Clients then contact to visualise the data. VisIt has been shown to scale effectively to tens of thousands
of cores, but it only allows on-node proximity with direct access and is also fairly heavy weight, which
may cause problems when performing different types of in situ integrations.

• ParaView (+ Catalyst): ParaView [2] is another tool for the visualisation of large data, while Catalyst
is an adaptor to enable in situ data analysis and visualisation. The simulation code passes the data (again
in VTK format) through an adaptor built with Catalyst to ParaView to visualise the data. ParaView and
Catalyst share the same characteristics as VisIt + LibSim. Also similarly, ParaView is also a heavy weight
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Figure 2.3: Categorisation of in situ data processing frameworks. Taken from Bauer’s et al. “A terminology for
in situ visualization and analysis systems” [6].

visualisation tool.

• SENSEI: SENSEI [3] is an effort to both streamline the in situ instrumentation of scientific code and al-
low for flexibility in the choice of analysis infrastructure. This flexibility is achieved by offering adaptors
to simulation code that allow it to connect to underlying technologies such as VisIt+LibSim or Par-
aview+Catalyst for visualisation and GLEAN, HDF5 or ADIOS for data staging. SENSEI also offers
support for data transfer in VTK format. SENSEI supports proximity on the same computing resource in
addition to on-node, both direct and indirect access.

• Omniverse: Omniverse [10] is an in situ system developed by NVIDIA with the target of allowing and
in situ visualisation using GPUs. One example is that the ParaView with Catalyst transfers the VTK data
through Omniverse Bridge in USD format to Omniverse. It supports both on-node and off-node access.

• Damaris/Viz: Damaris/Viz [8] is an in situ framework built on top of MPI that uses a client-server pattern
to enable data processing. Damaris/Viz was developed with the goals of having low impact on simulation
runtime, low impact for in situ integration, and high adaptability. The data formats allowed in Damaris
are VTK and HDF5. Damaris/Viz supports both direct and indirect accesses, but does not support distinct
remote computing resources. It can operate in either an in situ approach, utilising a subset of cores on
each simulation node, or in transit, by using a dedicated set of visualisation nodes.

• ALPINE: ALPINE [11] is an in situ infrastructure using the proxy pattern. Like Damaris, ALPINE also
supports VTK and HDF5 data formats. It only supports on-node proximity and direct access.

• GLEAN: GLEAN [21] is a non-intrusive framework for real time data analysis and I/O acceleration that
uses the proxy pattern to allow in situ processing, which allows it to be be integrated with the simulation
unaware of the in situ processing. GLEAN allows for custom data analyses to be performed on both
the compute and staging resources, mitigating the overall data saved to disk and improving application
performance. In transit workflows are supported when GLEAN asynchronously moves simulation data
to a separate allocation of staging nodes though standard I/O libraries like HDF5.

• ADIOS I & II: The Adaptable I/O System (ADIOS) [9,12,13] provides the highest level of synchronous
I/O performance. ADIOS is a componentisation of the I/O layer used by high-end simulations and/or
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for high-end scientific data management, providing an easy-to-use programming interface. ADIOS ab-
stracts the API away from implementation, allowing users to compose their applications without detailed
knowledge of the underlying software and hardware stack. ADIOS I uses the layer pattern and ADIOS II
uses the factory pattern to allow in situ analysis. ADIOS II is more flexible since it allows configuration
during run time and all also supports all the data types offered by MPI, such as arrays of double-precision
floating-point data. To address the growing imbalance between computational capability and I/O perfor-
mance, ADIOS introduced the concept of data staging where rather than writing data directly to shared
backend storage devices, a staging pipeline moves data to a transient location [5]. Since ADIOS supports
this location to be on separate physical nodes and/or on memory resources on the same node where data
is generated, ADIOS supports both the in transit and in situ data processing paradigms.

For a generic framework as envisaged in ADMIRE, the support for several proximity and access mecha-
nisms as well as flexibility in the data formats required are important. Interestingly, many of the frameworks
considered require specific data formats like the Visualization Toolkit (VTK) format [19], which offer a useful
data format for visualisation but typically require data transformation to use it, incurring an unnecessary over-
head. VisIt/LibSim, ParaView/Catalyst, and SENSEI are based on VTK pipelines and do not support distinct,
remote computing resources proximity, which makes them too specific as a general framework as the one we
are targeting in ADMIRE. On the contrary, ADIOS offers generic abstractions to link in situ routines with
simulation code, supporting distinct computing resources proximity and providing different possibilities for in
situ processing. It can also handle normal MPI data formats, which allows to use it directly from a simulation
without the need for data transformations. ADIOS can further use the I/O system and can stage the data via
RDMA or MPI. ADIOS, then, is a good candidate for implementing the core of ADMIRE’s data processing
framework, and the abstractions used in its API have heavily influenced the ADMIRE interfaces proposed in
Section 3.5.
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3. The I/O Scheduler API

In ADMIRE, the framework components can ask the I/O Scheduler (via the Intelligent Controller) for the
execution of several I/O related actions in the context of a HPC job. These actions can be differentiated in
actions that take place before/after the job starts/ends (i.e. pre/post-job actions), and actions taking place during
the job run time. In both cases, these actions will be executed by an appropriate target storage system, be it
and Ad hoc Storage System (e.g. GekkoFS or Hercules), the shared PFS (e.g. Lustre), or an Object Store
(e.g. dataClay). Figure 3.1 shows the control flow between the different ADMIRE components as well as the
general IDs for each interface and whether it “pushes” or “pulls” information to/from the recipient.
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Figure 3.1: ADMIRE control flow between the components.

3.1 Managing storage tiers and naming data resources

While using the facilities provided by the ADMIRE framework, users of the API often need a way to refer to
both data resources and the different storage tiers (i.e. the parallel file system, ad hoc storage systems, object
stores, local storage, etc.). In order to support this in a flexible manner, the API will support a naming schema
that reuses the internal IDs provided by each storage tier (e.g. POSIX paths for file systems and keys for object
stores), but adds a specific Tier_ID as a colon-separated prefix that identifies the storage tier from which data
comes from (e.g. lustre, gekkofs, hercules, etc.). Using such a naming schema has several advantages:

1. The actual resource name does not change between ADMIRE and the corresponding storage tier. It is
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just tagged with additional relevant information that can easily be extracted if needed.

2. Users can refer to data resources within a storage tier without specifically knowing how to access the tier.
This is specially important for user-level storage systems that do not always rely on the kernel to setup
a real mount point for them, or that even need specific libraries to be LD_PRELOADed before accessing
them.

3. Using Tier IDs allows the ADMIRE framework to dynamically configure the storage tiers visible to an
application, by creating namespaces as necessary. This allows job scripts and application code to be
written in a generic manner, without users having to concern themselves about where data is coming
from.

4. This naming schema has been previously used by well known parallel I/O libraries used in HPC such as
ROMIO [20], which links nicely with what the consortium wants to do in ADMIRE.

Furthermore, using a naming schema also allows specifying additional options when referring to data re-
sources, such as a specific range of bytes to transfer for a POSIX file, specific objects in a collection stored in
a KV-store, or a multi-dimensional array in an HDF5 file. Therefore whenever there is a need to refer to data
resources both in the Slurm interface or when directly invoking functions of the ADMIRE API, expressions
following the EBNF grammar below shall be supported:

〈data resource ID〉 ::= 〈tier ID〉 ‘:’ 〈item ID〉 [ ‘@’ 〈options〉 ]
〈tier ID〉 ::= an alphanumeric string assigned by the ADMIRE framework

〈item ID〉 ::= a POSIX path | an object ID

〈options〉 ::= 〈option name〉 ‘=’ 〈option value〉

Note that the hostname may be included in order to differentiate between node-local storage tiers with
the same name (e.g. node42[tmp]:/path/to/file). The listing below demonstrates some examples,
assuming that the ADMIRE framework has previously defined the lustre, gekkofs, and dataclay Tier
IDs, respectively, for a running installation of Lustre PFS, an instance of GekkoFS and an instance of dataClay:

# referencing a file in the Lustre PFS
lustre:/path/to/file

# referencing a specific range or ranges of a file in GekkoFS
gekkofs:/path/to/file@range=0+4096
gekkofs:/path/to/file@ranges=8192+8192,24576+8192,32768+8192

# referencing a local file at node 84
node84[tmp]:/path/to/file

# accessing a slice from matrix b01_12 in dataClay
dataclay:mathlib.matrix.Block/b01_12@slice([:2, :2])

3.2 Slurm user interface

As discussed in Section 2.2, to simplify gathering I/O requirements from end-users, the ADMIRE framework
will allow specifying such requirements when asking for resources from the batch scheduler, i.e., Slurm. There-
fore, in order to allow this interaction between end-users and the I/O Scheduler, it is necessary to extend the
existing Slurm API with the necessary facilities, so that it is possible to invoke them using a command line
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interface (CLI)1. This would allow users to specify storage tiers, in transit and in situ data operations, as well
as several Ad hoc Storage System options depending on the I/O requirements of their jobs. Thus, Slurm will
become the main point of interaction for end-users to provide requirements for ADMIRE’s I/O Scheduler.
Each Slurm argument is considered a user hint and is sent to the Intelligent Controller [ID4-Push] from where
it is forwarded to the I/O scheduler [ID6-Push] (see Figure 3.1). This section discusses the interfaces in this
Slurm user API in detail.

3.2.1 Specifying locations for data resources

The ADM_input and ADM_output interfaces (see Interface 3.1 and Interface 3.2, respectively) allow users
to specify the datasets that should be transferred between Ad hoc Storage Systems and the shared backend
storage system. We can distinguish the following relevant locations:

1. The location for an input dataset in the PFS storage tier.

2. The corresponding location where such dataset should be placed in the target Ad hoc Storage System.

3. The location of a dataset in an Ad hoc Storage System where the output from a simulation is being/has
been stored.

4. The corresponding output location in the PFS where such data should be placed after the simulation
completes.

Note that items 1 and 2 refer to the stage-in process and need to at least be partially completed before the
compute-job starts. Similarly, items 3 and 4 refer to the stage-out process. As discussed in Section 3.1, the
corresponding storage tiers are defined by specifying the Tier ID for each path, which allows the ADMIRE
framework to determine the specific tiers involved, as well as their particularities. In addition, we define an
ADM_inout interface (see Interface 3.3) which allows users to easily define input and output paths for use
cases in which the output path is equal to the input path. Therefore, the former overwrites the latter.

Interface 3.1: Definition of the Slurm ADM_input interface.
Name: ADM_input
Control ID: ID4 and ID6 (user hints)
Control Type: Push
Input: An origin location for the source dataset
Input: A target location for the destination dataset
Description:
Specifes the origin location in a storage tier where input is located, as well as the target location
where it should be placed in a different storage tier.

Example: sbatch --ADM_input="lustre:/some/dir gekkofs:/some/other/dir"

Interface 3.2: Definition of the Slurm ADM_output interface.
Name: ADM_output
Control ID: ID4 and ID6 (user hints)
Control Type: Push
Input: An origin location for the source dataset
Input: A target location for the destination dataset
Description:
Specifies the origin location in a storage tier where output is located, as well as the target location
where it should be placed in a different storage tier.

Example: sbatch --ADM_output="gekkofs:/some/dir lustre:/some/other/dir"

1Which in Slurm also allows including them in a job script.
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Interface 3.3: Definition of the Slurm ADM_inout interface.
Name: ADM_inout
Control ID: ID4 and ID6 (user hints)
Control Type: Push
Input: An origin location for the source dataset
Input: A target location for the destination dataset
Description:
Specifies both the input and output locations in a storage tier. This combines both ADM_input and
ADM_output for user convenience: the input data provided by origin is overwritten by the output
data generated at target.

Example: sbatch --ADM_inout="lustre:/some/dir gekkofs:/some/other/dir"

3.2.2 Options for Ad hoc Storage Systems

The interfaces described in this section allow users to control to a certain extent the behaviour of the target Ad
hoc Storage System that will be used to run their HPC applications.

Lifetime and resource allocation: The lifetime of an Ad hoc Storage System is inherently linked to an
application lifetime and, hence, to the batch job where it is executing. Nevertheless, it also makes sense to
keep an Ad hoc Storage System running to use it for a workflow of interrelated jobs. Furthermore, while in the
first case the resources that the Ad hoc Storage System instance uses to do its work will be co-located with the
application (i.e. they would share the same set of compute nodes), in the second case the Ad hoc Storage System
instance should run in a separate allocation with a separate set of resources (i.e. a separate set of compute
nodes) to facilitate reuse. To support these use cases, the ADM_adhoc_context, ADM_adhoc_nodes,
and ADM_adhoc_walltime interfaces are provided (Interfaces 3.4, 3.6, and 3.7, respectively).

Thus, the ADM_adhoc_context interface offers the following options:

• in_job:shared: The Ad hoc Storage System instance shares the lifetime of the job and all its re-
sources.

• in_job:dedicated: The Ad hoc Storage System instance shares the lifetime of the job and uses
some of its resources in a dedicated manner.

• separate:new: The Ad hoc Storage System instance runs independently from the job in a separate
set of resources.

• separate:existing: The Ad hoc Storage System used is a separate instance setup in a different
job. This option requires a valid context identifier to be provided with the ADM_adhoc_context_id
interface (Interface 3.5).

The number of nodes used for the Ad hoc Storage System will be specified using the ADM_adhoc_nodes
interface. Additionally, when running in a separate:new mode, a context identifier will be returned that
subsequent jobs may use with the separate:existing and the ADM_adhoc_context_id interfaces to
get access to this Ad hoc Storage System instance (see Interface 3.5). How long this separate instance lives can
be controlled with the ADM_adhoc_walltime interface (Interface 3.7).
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Interface 3.4: Definition of the Slurm ADM_adhoc_context. interface
Name: ADM_adhoc_context
Control ID: ID4 and ID6 (user hints)
Control Type: Push
Input: A valid execution_mode describing how the Ad hoc Storage System should behave.
Output: adhoc_context_id
Description:
Specifies the execution_mode an Ad hoc Storage System should use. Valid options:

1. in_job:shared: run while sharing the application’s compute nodes;

2. in_job:dedicated: run using a subset of the application’s compute nodes;

3. separate:new: ask the system to allocate a separate job with separate runtime and
number of nodes;

4. separate:existing: ask the system to reuse an already running Ad hoc Storage
System instance.

The number of nodes assigned for the Ad hoc Storage System must be specified with
ADM_adhoc_nodes. In the separate:new execution_mode, the lifetime of the Ad hoc Storage
System will be controlled with ADM_adhoc_walltime. In the separate:existing
execution_mode, a valid context ID must be provided with ADM_adhoc_context_id.

Example:
# full co-location: 40 nodes fully shared
sbatch --nodes=40 --ADM_adhoc_nodes=40 --ADM_adhoc_context=in_job:shared

# partial co-location: 40 nodes for app. + 20 nodes for I/O
sbatch --nodes=40 --ADM_adhoc_nodes=20 --ADM_adhoc_context=in_job:shared

# partial co-location, dedicated: 20 nodes for app. + 20 nodes I/O
sbatch --nodes=40 --ADM_adhoc_nodes=20 --ADM_adhoc_context=in_job:dedicated

# separate allocation: 40 nodes for app. + 20 nodes I/O
# (Returns Context ID 42)
sbatch --nodes=40 --ADM_adhoc_nodes=20 --ADM_adhoc_context=separate:new

# reuse allocation with ID 42: 30 nodes for app. + existing 20 nodes I/O
sbatch --nodes=30 --ADM_adhoc_context=separate:existing

--ADM_adhoc_context_id=42

Interface 3.5: Definition of the Slurm ADM_adhoc_context_id interface.
Name: ADM_adhoc_context_id
Control ID: ID4 and ID6 (user hints)
Control Type: Push
Input: A valid context_id for a separate instance of an Ad hoc Storage System
Description:
Specifies an existing Ad hoc Storage System to use via its ID.
Example: sbatch --nodes=30 --ADM_adhoc_context=separate:existing

--ADM_adhoc_context_id=42
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Interface 3.6: Definition of the Slurm ADM_adhoc_nodes interface.
Name: ADM_adhoc_nodes
Control ID: ID4 and ID6 (user hints)
Control Type: Push
Input: The desired number_of_nodes
Description:
Specifies the number of nodes for the Ad hoc Storage System. If the
ADM_adhoc_execution_mode is shared, the number cannot exceed the number of allocated
nodes within the compute job. If the ADM_adhoc_execution_mode is dedicated, the number
of nodes is not restricted.

Example: sbatch --ADM_adhoc_nodes=10

Interface 3.7: Definition of the Slurm ADM_adhoc_walltime interface.
Name: ADM_adhoc_walltime
Control ID: ID4 and ID6 (user hints)
Control Type: Push
Input: The desired walltime in minutes
Description:
Specifies for how long the ad hoc storage system should run before should down. Only relevant in the

context of the ADM_adhoc_context function.
Example:
sbatch --nodes=40 --ADM_adhoc_nodes=10 --ADM_adhoc_context=separate:new

--ADM_adhoc_walltime=60

Usage: Knowing the intended usage of an Ad hoc Storage System in advance allows the I/O Scheduler to
make assumptions on how data will be used. It may also allow the Storage System itself to perform some
optimisations that would not be possible without this information. The ADM_adhoc_access interface (In-
terface 3.8) allows users to provide this information from the Slurm command line. Note that this is just a hint
on how the file system will be used and though it will be passed along to the Ad hoc Storage System instance,
the ADMIRE framework will not enforce this usage.

Interface 3.8: Definition of the Slurm ADM_adhoc_acccess interface.
Name: ADM_adhoc_access
Control ID: ID4 and ID6 (user hints)
Control Type: Push
Input: The desired access method
Description:
Specifies access to the ad hoc storage system: write-only, read-only, read-write. Cannot
be used when using an existing Ad hoc Storage System instance.

Example: sbatch --ADM_adhoc_access=read-only

Data distribution: Instead of always using a fixed pre-defined data distribution, some Ad hoc Storage Sys-
tems allow users to choose between several data distributions that might be more beneficial performance-wise
for their applications. The ADM_adhoc_distribution interface (Interface 3.9) allows choosing this op-
tion and passing it to the Ad hoc Storage System instance required by the application.
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Interface 3.9: Definition of the Slurm ADM_adhoc_distribution interface.
Name: ADM_adhoc_distribution
Control ID: ID4 and ID6 (user hints)
Control Type: Push
Input: The desired data distribution
Description:
Specifies the data distribution within the ad hoc storage system, e.g., wide-striping, local,
local-data-global-metadata.

Example: sbatch --ADM_adhoc_distribution=wide-striping

Background flush: The ADM_adhoc_background_flush interface (see Interface 3.10) allows users to
enable the background movement of data from a specified output location in an Ad hoc Storage System to the
shared PFS while the application is running. Note that this option may not be supported by all Ad hoc Storage
Systems, in which case an error will be returned. Also note that this option requires an output target location in
the PFS to have previously been defined using the interfaces presented in Section 3.2.1.

Interface 3.10: Definition of the Slurm ADM_adhoc_background_flush interface.
Name: ADM_adhoc_background_flush
Control ID: ID4 and ID6 (user hints)
Control Type: Push
Input: A boolean enabling or disabling the option
Description:
Specifies if data in the output location should be moved to the shared backend storage system in the
background (default false).

Example: sbatch --ADM_adhoc_background_flush=true

3.2.3 In situ/in transit data operations

These Slurm interfaces allow users to specify that they need in situ or in transit data operations to be performed
on datasets, and provide a configuration file describing such operations (see Interfaces 3.11 and 3.12, respec-
tively). The actual format of the configuration file will depend on how ADMIRE’s in situ/in transit framework
ends up being implemented, but will allow applying the APIs defined in Section 3.5.

Interface 3.11: Definition of the Slurm ADM_in_situ_ops interface.
Name: ADM_in_situ_ops
Control ID: ID4 and ID6 (user hints)
Control Type: Push
Input: A path to the configuration file
Description:
In situ data operations specified in a given configuration file.

Interface 3.12: Definition of the Slurm ADM_in_transit_ops interface.
Name: ADM_in_transit_ops
Control ID: ID4 and ID6 (user hints)
Control Type: Push
Input: A path to the configuration file
Description:
In transit data operations specified in a given configuration file.
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3.3 Internal interfaces for ADMIRE components

While the Slurm interface offers the main point of entry for end users to interact with ADMIRE’s I/O Sched-
uler, the internal components of the framework (most notably the Intelligent Controller) also need appropriate
interfaces to do so. This section describes such interfaces.

3.3.1 Requesting data transfers

Data transfers are described as the movement of datasets between storage tiers. As discussed in Section 3.1,
the dataset IDs will follow a naming schema that will allow determining the appropriate storage tiers involved.

Interface 3.13: Definition of the ADM_transfer_dataset internal interface.
Name: ADM_transfer_dataset
Control ID: ID5
Control Type: Push/Pull + Async
Input: A source_location identifying the source dataset/s in the source storage tier
Input: A destination_location identifying the destination dataset/s in its desired location in a

storage tier
Input: A list of qos_constraints that must be applied to the transfer. These may not exceed the

global ones set at node, application, or resource level (see Section 3.4)
Input: A distribution strategy for data (e.g. one-to-one, one-to-many, many-to-many)
Input: A job_id identifying the originating job
Output: A transfer_handle allowing clients to interact with the transfer (e.g. wait for its

completion, query its status, cancel it, etc.
Description:
Transfers the dataset identified by the source_name to the storage tier defined by
destination_name, and apply the provided constraints during the transfer. This function returns a
handle that can be used to track the operation (i.e., get statistics, or status).

Note that even if the interface definition presented in Interface 3.13 is intended for internal use, a reduced
version will be made available for ADMIRE-enabled applications. This limited interface will allow applica-
tions using the API to request data transfers directly, but will not be able to influence the QoS constraints con-
trolling such transfers. Note that a transfer_handle is returned by the interface. This transfer_handle
allows clients to further interact with the transfer. We currently envision that it should be possible to wait for
an asynchronous transfer to complete, to query its status (i.e. did it complete successfully?) and to cancel it if
it has not started yet. For the sake of brevity, we are omitting the definitions for these extra interfaces.

3.3.2 Specifying information about datasets

The ADM_set_dataset_information (Interface 3.14) interface allows clients to provide extra informa-
tion to the I/O Scheduler about data resources. For now, we consider that it is important for the I/O Scheduler
to have information about a dataset’s lifespan (i.e. temporary vs. persistent), its intended usage (i.e.
input vs. output vs. inout), and how it will be accessed (i.e. read vs. write vs. read-write vs.
read-modify-write). Nevertheless, since this list may be expanded in the future, the interface is designed
in a generic manner with an opaque info parameter. Note that even though this information will arrive via
the Intelligent Controller, Slurm is intended to be the main source of this information, since it will be able to
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process the extra options attached to a data resource providing I/O hints (see Section 3.1).

Interface 3.14: Definition of the ADM_set_dataset_information internal interface.
Name: ADM_set_dataset_information
Control ID: ID5
Control Type: Push
Input: A resource_id identifying the dataset of interest
Input: An opaque info argument containing information about the dataset (e.g. its lifespan, access

methods, intended usage, etc.)
Input: A job_id identifying the originating job
Output: A status code determining whether the operation was successful
Description:
Sets information for the dataset identified by resource_id.

3.3.3 Malleability

As discussed in D3.1, malleability is the ability to shrink or expand resources on demand, which also in-
cludes the resources related to the I/O capabilities of an application. As such, the I/O Scheduler offers the
ADM_set_io_resources interface (Interface 3.15) to support altering this in a malleable manner. For now,
we only envision changing the number of I/O nodes assigned to an Ad hoc Storage System but, nevertheless,
the interface receives an opaque parameter resources that will allow expanding this requirement.

Interface 3.15: Definition of the ADM_set_io_resources internal interface.
Name: ADM_set_io_resources
Control ID: ID5
Control Type: Push
Input: A tier_id specifying the target storage tier
Input: An opaque resources argument containing information about the I/O resources to modify (e.g.

number of I/O nodes.)
Input: A job_id identifying the originating job
Output: A status code indicating whether the operation was successful
Description:
Changes the I/O resources used by a storage tier, typically an Ad hoc Storage System.

3.3.4 Influencing pending transfers in the I/O Scheduler

In order to provide more precise control for the Intelligent Controller, the I/O Scheduler offers a set of interfaces
that allow influencing how transfers are managed. Interfaces 3.16, 3.17, 3.18, and 3.19 have been designed for
this purpose.

Interface 3.16: Definition of the ADM_get_transfer_priority internal interface.
Name: ADM_get_transfer_priority
Control ID: ID5
Control Type: Pull + Sync
Input: A transfer_id identifying a pending transfer
Output: The priority of the pending transfer or an error code if it didn’t exist or is no longer pending
Description:
Returns the priority of the pending transfer identified by transfer_id
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Interface 3.17: Definition of the ADM_set_transfer_priority internal interface.
Name: ADM_set_transfer_priority
Control ID: ID5
Control Type: Push + Sync
Input: A transfer_id identifying a pending transfer
Input: A positive or negative number n for the number of positions the transfer should go up or down

in its scheduling queue
Output: A status code indicating whether the operation was successful
Description:
Moves the operation identified by transfer_id up or down by n positions in its scheduling queue.

Interface 3.18: Definition of the ADM_cancel_transfer internal interface.
Name: ADM_cancel_transfer
Control ID: ID5
Control Type: Push + Sync
Input: A transfer_id identifying a pending transfer
Output: A status code indicating whether the operation was successful
Description:
Cancels the pending transfer identified by transfer_id.

Interface 3.19: Definition of the ADM_get_pending_transfers internal interface.
Name: ADM_get_pending_transfers
Control ID: ID5
Control Type: Pull + Sync
Output: A list of pending_transfers
Description:
Returns a list of pending transfers. Each operation will include a transfer_id as well as information
about the involved resources and tiers

3.4 QoS constraints

QoS constraints will be provided to the I/O Scheduler by other ADMIRE components (notably the Intelli-
gent Controller), and also need to be conveyed from the I/O Scheduler to the Ad hoc Storage System in-
stances and the PFS. Thus, we define the ADM_set_qos_constraints interface for this particular pur-
pose (Interface 3.20) that will be supported by these particular components. Additionally, we also provide the
ADM_set_qos_constraints for querying purposes (Interface 3.21).

Interface 3.20: Definition of the ADM_set_qos_constraints internal interface.
Name: ADM_set_qos_constraints
Control ID: ID5/ID8/ID9
Control Type: Push + Sync
Input: The scope it should be applied to: dataset, node, or job
Input: A QoS class (e.g. "badwidth", "iops", etc.)
Input: A valid id for the element that should be constrained, i.e. a resource ID, a node hostname, or a

Job ID
Input: An appropriate value for the selected class
Output: A status code indicating whether the operation succeeded
Description:
Registers a QoS constraint defined by class, scope, and value for the element identified by id
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Interface 3.21: Definition of the ADM_set_qos_constraints internal interface.
Name: ADM_get_qos_constraints
Control ID: ID6
Control Type: Pull + Sync
Input: The scope being queried: dataset, node, or job
Input: A valid id for the element of interest, i.e. a resource ID, a node hostname, or a Job ID
Output: A list of QoS constraints that includes all the classes currently defined for the element as

well as the values set for them
Description:
Returns a list of QoS constraints defined for an element identified for id

3.5 In-situ/In-transit data operations

The I/O Scheduler needs to provide an API that allows deploying code for both in situ and/or in transit data
operations, but also to define when they will be used. The interfaces ADM_define_data_operation,
ADM_connect_data_operation, and ADM_finalize_data_operation fulfil this purpose (see
Interfaces 3.22, 3.23, and 3.24). Alternatively, rather than connecting a data operation directly to a data re-
source, it is possible to link it to a pending data transfer so that it is applied when the transfer is executed. The
interface ADM_link_transfer_to_data_operation covers this use case (see Interface 3.25). Note
that in this case, the operation does not need to be explicitly finalised.

Interface 3.22: Definition of the ADM_define_data_operation internal interface.
Name: ADM_define_data_operation
Control ID: ID5
Control Type: Push
Input: A valid path for the operation code
Input: A user-defined operation_id for the operation
Input: A list of arguments for the operation
Output: A status code indicating whether the operation was successful
Description:
Defines a new operation, with the code found in path. The code will be identified by the user-provided
operation_id and will accept the arguments defined, using the next format "arg0, arg1, arg2, . . . "

Interface 3.23: Definition of the ADM_connect_data_operation internal interface.
Name: ADM_connect_data_operation
Control ID: ID5
Control Type: Push
Input: The operation_id of the operation to be connected
Input: An input data resource for the operation
Output: An output data resource where the result of the operation should be stored
Input: A stream boolean indicating if the operation should be executed in a streaming fashion
Input: The values for the arguments required by the operation
Input: A job_id identifying the originating job
Output: An operation_handle for the operation that allows clients to further interact with the

operation (e.g query its status, cancel it, etc.)
Description:
Connects and starts the data operation defined with operation_id and with the arguments, using the
input and output data storage (i.e., files). If the operation can be executed in a streaming fashion
(i.e., it can start even if the input data is not entirely available), the stream parameter must be set to
true.

25



ADMIRE The I/O Scheduler API

Interface 3.24: Definition of the ADM_finalize_data_operation internal interface.
Name: ADM_finalize_data_operation
Control ID: ID5
Control Type: Push
Input: The operation_id of the operation to be connected
Output: A status code indicating whether the operation was successful
Description:
Finalises the operation defined with operation_id.

Interface 3.25: Definition of the ADM_link_transfer_to_data_operation internal inter-
face.

Name: ADM_link_transfer_to_data_operation
Control ID: ID5
Control Type: Push
Input: The operation_id of the operation to be connected
Input: The transfer_id of the pending transfer the operation should be linked to
Input: A stream boolean indicating if the operation should be executed in a streaming fashion
Input: The values for the arguments required by the operation
Input: A job_id identifying the originating job
Output: An operation_handle for the operation that allows clients to further interact with the

operation (e.g query its status, cancel it, etc.)
Description:
Links the data operation defined with operation_id with the pending transfer identified by
transfer_id using the values provided as arguments. If the operation can be executed in a
streaming fashion (i.e., it can start even if the input data is not entirely available), the stream
parameter must be set to true.

Similarly to Interface 3.13, some of these interfaces return an operation_handle to allow clients
further interaction with the operation. We currently envision that it should be possible to query the status of an
operation (i.e. did it complete successfully?) and to disconnect it/unlink it if it has not started yet. Again, for
the sake of brevity, we are omitting the definitions for these extra interfaces.

3.6 Job I/O activity information

Finally, in order to provide information for the Monitoring Manager in WP5, the I/O Scheduler needs to
provide an interface that allows monitoring the I/O behavior on a per-job basis. This includes collecting
key metrics, such as information about read and write operations or the number of metadata requests. The
ADM_get_statistics use case covers this case (see Interface 3.26).

Interface 3.26: Definition of the ADM_get_statistics internal interface.
Name: ADM_get_statistics
Control ID: ID6
Control Type: Pull
Input: job_id
Input: job_step
Output: job_statistics
Description:
Returns the current I/O statistics for a specified job_id and an optional corresponding job_step. The

information will be returned in an easy-to-process format, e.g., JSON (see Listing 3.1).
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Listing 3.1: Example JSON output for job I/O activity.

1 {"job_statistics": {
2 "job_id": "132544",
3 "job_step": "1",
4 "runtime": "180s",
5 "number_of_operations": {
6 "metadata": [
7 {"type": "create", "ops": "30000"},
8 {"type": "stat", "ops": "50000"},
9 {"type": "remove", "ops": "500"},

10 {"type": "readdir", "ops": "23"}
11 ],
12 [...]
13 }
14 }}

3.7 UML diagram

For the sake of completeness, Figure 3.2 shows the UML diagram of the functions provided by the I/O Sched-
uler. The diagram illustrates the API definitions related to each one of the ADMIRE architecture components:
SLURM, Sensing and Profiling, Malleability Manager, Intelligent Controller, Adhoc Storage and parallel file
system.
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Figure 3.2: UML diagram related to WP4 API.
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Conclusion

This deliverable describes the responsibilities of the I/O Scheduler and how it interacts with other components
in ADMIRE. The I/O Scheduler is the component in ADMIRE responsible for orchestrating the different
data movements between the Back-end and Ad hoc Storage Systems. It is also responsible for conveying and
enforcing QoS constraints to the involved storage tiers in response to the system-wide information collected
by the other components of the framework and processed by the Intelligent Controller. Moreover, it is also
required to provide facilities for users to deploy and execute data operations that can be applied to datasets both
in situ and in transit.

This deliverable also proposes a set of interfaces for the I/O Scheduler that (1) allow capturing the afore-
mentioned I/O requirements from end-users; (2) enable other components to define and communicate QoS
constraints for the I/O Scheduler to apply; and (3) allow describing and executing the necessary data trans-
fers required for the execution of job workflows. The interfaces proposed have been designed on the one
hand to allow end-users to provide these requirements via the Slurm Workload Manager (and/or specific APIs
if developers wish to modify their applications), and on the other hand to be flexible enough for other AD-
MIRE components to communicate enough information for the I/O Scheduler to produce and apply useful I/O
scheduling decisions.
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Appendix A

Annex I: Terminology

• Ad hoc Storage System, ephemeral storage system that only exists in a determined period, i.e. during a
job’s execution.

• CLI, command line interface.

• DRAM, dynamic random-access memory.

• EBNF, Extended Backus–Naur Form is a family of metasyntax notations, any of which can be used
to express a context-free grammar. EBNF is used to make a formal description of a formal language
such as a computer programming language. They are extensions of the basic Backus–Naur form (BNF)
metasyntax notation.

• In situ data, processing the data where it is originated.

• In transit data, processing the data when it is moved.

• NORNS, data transfer service for HPC developed at BSC.

• NVM, non-volatile memory.

• PFS, parallel file system.

• POSIX, Portable Operating System Interface, family of standardized functions.

• QoS, Quality of Service.

• RDMA, remote direct memory access.

• RPC, remote procedure call.

• Slurm, job submission system widely used.

• SSD, solid state drive.

• Object store, persistent storage system where data are stored not as file but as objects. In its canonical im-
plementation Object are immutable and the API is limited to PUT, GET and DELETE. More sophistical
object store have been developed on the ground of these concepts such as ADMIRE Data Clay.

• Disaggregated Storage, storage systems where all the storage capabilities are centralized in dedicated
network attached storage servers. This approach allows connected compute nodes to access a storage
capacity without constraints related to the capacity of a single storage device.

• PFS, Parallel File System, type of distributed file system supporting a global namespace and spread
across multiple storage servers.
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• Node Local Storage, ability for a compute server to store persistent data on physically local storage
devices.

• Ephemeral Storage, file systems which are making persistent (surviving across system reboot) but which
are designed to be deployed and destroyed over a limited period of time, from few hours up to few
months.

• API, Application Programming Interface, a mechanism that enables an application or service to access a
resource within another application or service. The application or service doing the accessing is called
the client, and the application or service containing the resource is called the server.

• Rest API, such APIs can be developed without constraint and the programming language and support
a variety of data formats. The only requirement is that they align to the following six REST design
principles - Uniform interface, Client-server decoupling, Statelessness, Cacheability, Code on demand
(optional).

• OSS, an Object Store Server in the Lustre terminology is a computing server in charge of managing the
ingest of data, including generation of the data protection, and ship these data to the correct Object Store
Target.

• OST, Object Store Target in the Lustre terminology is a storage server accommodating potentially a large
number of hard drives and/or NMVes. The OST write the data received from the OSS and make them
persistent.

• MDS, MetaData Server.

• MDT, MetaData Target.

• Stripe, an elementary chunk of data according to the Lustre terminology. A large file is split in multiple
stripes and each stripe is sent to an individual OST. The higher is the number of stride, the higher is the
parallelism.

• Monitoring Manager,

• Intelligent Controller,

• Monitoring Daemon,

• TBON, Tree Based Overlay Network,

• PromQL, the query language supported by the Prometheus database. Syntax, documentation and exam-
ples are available here: https://prometheus.io/docs/prometheus/latest/querying.
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