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Executive Summary

The ADMIRE project is defining a new holistic manner of coordinating Inputs and Outputs (I/Os) at the scale
of an Exascale High-Performance Computing (HPC) system. The core objective is to design and implement a
control and measure feedback-loop. The implementation of the feed-back loop will allow to both predict and
learn optimal I/O configurations. To achieve this goal, the partners in ADMIRE, which are involved in all layers
of the I/O stack ranging from the parallel application up to the low-level storage layer, are building a common
infrastructure. In this context, the deliverable D5.1 addresses the envisioned Application Programming Inter-
face(API) to implement performance feedback in the project. This API has been devised to provide as much
information as possible while remaining lean and re-configurable to constantly adapt our measurement. The
deliverable addresses the complexities of I/O measurements, review the existing state-of-the-art, and unfolds
our proposed implementation. An added value of the approaches in ADMIRE is the combination of the all
measurements layers leveraging their synergy. This document marks as well the reaching of Milestone 2: The
API definition, with a Chapter (Chapter 4 ) dedicated to the presentation of the API to interface Performance
Monitoring and the Intelligent Controller. Beside the presentation of the API, this deliverable sets the base for
a versatile I/O measurement layer thanks to cross-layer collaborations. Moreover, due to the co-design process
and the close collaboration in the project framework, we expect this new performance scheme to produce an
unprecedented always-on versatile measurement layer for Exascale systems.
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Chapter 1

Introduction

In the general ADMIRE architecture, as shown in Figure 1.1, WP5 is in charge of monitoring. The flow
of information from other system components to WP5 is materialized by black arrows in the figure. The
Monitoring Manager obtains information from multiple data sources: the ad-hoc file systems, the applications,
the monitoring tool-set running on every nodes, and the main storage. All these data end-up stored in a dedicated
Data Lake. An important architectural point is that data are flowing from multiple paths, but in term of control
flow only a single path exists. Among all the components of the ADMIRE system only the Intelligent Controller
can exchange commands and interact with the Monitoring System. Therefore, the Monitoring System can be
seen as a data aggregator driven by the Intelligent Controller.

Figure 1.1: General Control Flow between ADMIRE components. The WP5 Sensing and Profiling probes and
the Monitoring Manager in charge of managing data collection are referred jointly as the Monitoring System
in the remainder of the document.

The purpose of this first Deliverable is to provide the current design status for the Monitoring System and
to define a set of probes and their respective APIs. Publication of the API at this early stage of the project is
important, as it has implication on the Intelligent Controller road map and implementation.

The internals of the Monitoring System will be iteratively refined during the lifetime of the project, We will
start with the most generic probes and then refine and develop more advanced features. One example being
an initial measurement of the CPU load and the I/O load and later-wise a measurement of the overlap between
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CPU and I/O activities.
The probe mechanism envisioned in Chapter 4 is hierarchical, in the sense that a rule-based language is

proposed to trigger additional measurements (e.g. if and only if a I/O activity reaches a threshold then a prob-
ing is triggered which is able to determine if this I/O activity is overlapped with computation). In the foreseen
implementation of the Monitoring System, the notification capability of the Monitoring Manager is considered
as a part of the Analytic Module. More details, including code samples, are provided in Section 2.4.6. Noti-
fication is now an expected feature in Cloud monitoring software that we intend to leverage within ADMIRE
1.

The general approach of WP5 is to favor a multi-components Monitoring System and avoid monolithic
design. In terms of services, each compute node is observed by a dedicated process and the information is
forwarded to a Data Lake under the orchestration of the Monitoring Manager. As several existing components
already includes some self observation facilities, our approach is to integrate these capabilities and collect the
data. After a review of these pre-existing monitoring capabilities in the software stack, we will present the
outline and structure of the Deliverable.

1.1 Background Technologies

Prior to the project, the performance landscape is already an active field of research in the community. However,
I/O is not well integrated and the most sophisticated solutions are devoted to the observation of the computa-
tional part.

Performances in ADMIRE are focused on I/O but not restricted solely to it. As we will discuss later in
the document, there are some interactions between the I/O performance and the compute performance of an
application. The ADMIRE consortium has some considerable expertise in performance analysis through the
performance monitoring tool TAU. The I/O performance can be addressed either at the file system level, global
and persistent such as Lustre, or ephemeral and at the local level as for GekkoFS. At last, performance can also
be related to storage but not only to files, as illustrated by the Object Store dataClay.

The following section will depict the current status in terms of performance monitoring for each of these
technologies.

1.1.1 TAU Performance Monitoring

TAU Performance System [26] is a portable profiling and tracing toolkit for performance analysis of parallel
programs written in Fortran, C, C++, UPC, Java, or Python.

TAU (Tuning and Analysis Utilities) is capable of gathering performance information through instrumenta-
tion of functions, methods, basic blocks, and statements as well as event-based sampling. All C++ language fea-
tures are supported, including templates and namespaces. The API also provides selection of profiling groups
for organizing and controlling instrumentation. The instrumentation can be inserted in the source code using an
automatic instrumenting tool based on the Program Database Toolkit (PDT), dynamically using DyninstAPI, at
runtime in the Java Virtual Machine, or manually using the instrumentation API.

TAU’s profile visualization tool, paraprof, provides graphical displays of all the performance analysis re-
sults, in aggregate and single node/context/thread forms. The user can quickly identify sources of performance
bottlenecks in the application using the graphical interface. In addition, TAU can generate event traces that can
be displayed with the Vampir, Paraver or JumpShot trace visualization tools.

1.1.2 Lustre

Lustre [3] is a fully POSIX-compliant parallel file system offering extreme performance and scalability. Lustre
file system is ubiquitous in the HPC and is gaining footholds in the more generic enterprise market. The
applications send their I/O requests to Lustre using a kernel module running on each node. The kernel module
will direct the metadata operation to Lustre MetaData Server (MDS) and the data payload to the multiple Object
Store Servers (OSS). Files are split in multiple chunks (named stripe in the Lustre terminology). The Object

1https://prometheus.io/docs/alerting/latest/overview/

6

https://prometheus.io/docs/alerting/latest/overview/


CHAPTER 1. INTRODUCTION ADMIRE

Store Servers store these stripes as individual files on their local sequential file system. Therefore, Lustre
can be seen as a parallel orchestrator on the top of multiple sequential file systems. The terminology to refer
to such implementation of parallel file system is overlay file system. The number of active OSS defines the
level of parallelism of the Lustre file system, hence the bandwidth performance. The second crucial aspect
for the performance is related to the Metadata, here the number of active MDS is the main drivers for the
performance. For such complex software stack performances depends on multiple criteria, some external such
as the I/O pattern to handle and other related to some fine-tuning knobs, for instance the data-on-metadata or
other optimization which are currently out of the scope of this document.

Lustre is an open-source project developed by the OpenSFS 2 with multiple commercial forks of the project,
the most widely known ones being the ClusterStor [18] product from Cray / HPE and ExaScaler [29] from DDN.

Monitoring Capabilities

Lustre support multiple probes for logging, tracing, debugging, and monitoring performance.
Even though the logging mechanism of Lustre is powerful and extremely convenient for archiving (see

RobinHood [17]), its usage for performance analysis remains limited only for metadata observation.
Lustre monitoring tools support a wide variety of metrics 3, however in the scope of ADMIRE the goal is to

use specifically the most advanced Lustre monitoring interfaces. Originated from seminal works in Lime [31],
the new performance monitoring interface of Lustre is named Barrel-eye4. This system allows not only to
monitor the performance at node level or at the global file system level, but also at a key granularity in HPC:
the job level. Figure 1.2 illustrates the typical measurements which can be obtained for (from?) a job on a

Figure 1.2: Lustre job monitoring capabilities as displayed by prototype version of Barrel-eye.

Lustre system. Barrel-eye is an open-source project available on GitHub.
A key feature in previously Lime and now Barrel-eye is the higher-level semantic brought to performance

data. The file system can extract the job ID from each compute node and hence can rebuild the performance
metrics on a per-job basis. This allows to provide performance information of all the jobs currently running on
the system. The main limitation of Lime and Barrel-eye is that their sole focus is on I/O. No information about

2www.opensfs.org
3https://wiki.lustre.org/Lustre_Monitoring_and_Statistics_Guide
4https://github.com/LiXi-storage/barreleye
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the memory pressure or the CPU/GPU activity is collected by the system. One of the goal of ADMIRE is to
bridge this gap.

1.1.3 GekkoFS

GekkoFS is a highly scalable user-level distributed file system for HPC clusters. GekkoFS is capable of aggre-
gating the local I/O capacity and performance of compute nodes to produce a high-performance storage space
for applications. With GekkoFS, HPC applications and simulations can run isolated from each other regarding
I/O, which reduces interferences and improves performance. Furthermore, GekkoFS has been designed with
configurability in mind and allows users to fine tune several of the default POSIX file system semantics (e.g.
support for symbolic links or strict bookkeeping of file access timestamps) that, even if useful, might not be re-
quired by their applications and hence negatively impact their I/O performance. Please refer to D2.1 for details
on GekkoFS internals.

Monitoring

GekkoFS uses a tracing subsystem to report valuable insights on the behavior of GekkoFS. In the context of
ADMIRE, we will extend GekkoFS and integrate it with monitoring tools, e.g., Prometheus, allowing us to
report a number of GekkoFS performance counters to the ADMIRE stack. Examples for such counters could
be the average number of RPCs per second for each server or the current storage capacity information. The
specifics of available performance counters, particularly w.r.t. low-level network information, remain to be
defined. For sending the combined monitoring information, one server will act as a management role and will
be responsible to gather this information from other servers that are part of the ad-hoc file system. We envision
several modes to make this data available: On-request or at defined intervals.

It is important to note that a too tight time interval, or in general, too granular monitoring may lead to sig-
nificant performance degradation for the application. In the worst case, this may also impact the behavior of the
application itself, resulting in invalid monitoring information because it does no longer reflect the application
workload without monitoring [28]. Therefore, one of our tasks will be to minimize monitoring overhead as
much as possible to ensure accurate information.

1.1.4 DataClay

DataClay [19] is a distributed object store with active capabilities. Objects in dataClay have an associated se-
mantics, which gives them an object-oriented structure, as well as the possibility to attach arbitrary user code to
manipulate them. This feature allows applications to execute object methods within dataClay, instead of trans-
ferring the objects to the application space. In this way, data transfers are reduced and also new devices, such
as NVMs, can be leveraged during the execution of these methods transparently to the application. dataClay is
implemented at user-level, so it is visible to applications using its client library. Please refer to D2.1 for further
details on dataClay and its architecture.

Monitoring Capabilities

dataClay is integrated with the Paraver5 tool, which enables the performance analysis of applications and detect
possible bottlenecks or other sources of inefficiencies. This is done through different kinds of visualizations of
execution traces that can be analyzed under several metrics in a post-mortem manner. However, dataClay does
not currently provide its metrics and tools to monitor the behavior of the system during execution.

Thus, one of the goals within ADMIRE is to integrate dataClay with a monitoring tool, such as Prometheus,
to obtain on-line metrics that can be exported to other components in the ADMIRE stack. The specific set of
metrics that will be provided is currently being defined. However, at the current time, we have already identified
some metrics that can be relevant for the objectives of the ADMIRE architecture. All of them are defined within
the scope of a node, as this is the kind of information that will be useful to make decisions, e.g. on malleability.

5https://tools.bsc.es/
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The kind of metrics we are currently considering are, for instance, the total size of objects6 in a node, the
number of objects per node, or hits and misses in the object caches. In addition, as dataClay is an active object
store, additional metrics related to execution might also be interesting. For instance, the execution time of a
method, or the amount of concurrent executions, can also be useful inputs for the Intelligent Controller.

1.1.5 Hercules

Hercules In-memory storage system has a set of well-defined objectives. Firstly, Hercules should provide
flexibility in terms of deployment. To achieve this, the Hercules API provides a set of deployment methods
where the number of servers conforming the instance, as well as their locations, buffer sizes and their coupled
or decoupled nature, can be specified. Hercules follows a multi-threaded design architecture. Each server
conforming an instance counts with a dispatcher thread and a pool of worker threads. The dispatcher thread
distributes the incoming workload between the worker threads with the aim of balancing the workload in a
multi-threaded scenario. Main entities conforming the architectural design are Hercules clients (front-end),
Hercules server (back-end), and Hercules metadata server. Finally, Hercules offers to the application a set of
distribution policies at dataset-level. As a result, the storage system will increase awareness in terms of data
distribution at the client side, providing benefits such as data locality exploitation and load balancing.

Furthermore, to deal with the Hercules dynamic nature, a distributed metadata service based on multiple
servers was included in the design step. The metadata servers are in charge of storing the structures repre-
senting each Hercules and dataset instances. Consequently, clients are able to join an already created Hercules
instance as well as accessing an existing dataset among other operations. The metadata server follows the
chosen Hercules deployment strategy and will be exclusively accessed in metadata-related operations, such as:
create_dataset or open_Hercules. Note that no metadata requests will be performed in data-oriented operations,
such as get_data or set_data, reducing both the overhead of the I/O accesses and the risk of contention at the
metadata server.

Hercules provides multiple data distribution policies by design (local, buckets, hash, round-robin, and crc)
in both deployment modes, increasing the number of data scattering possibilities among storage servers and
enlarging versatility in terms of application’s data management. Within the previous possibilities, a LOCAL
policy should be highlighted as it will have the objective of exploiting data locality as much as possible: data
requests will be forwarded to the storage server running in the same machine where the request was made.
Finally, a non-POSIX get-set interface will be provided in order to manage datasets, which conform to a
storage abstraction used by Hercules instances to manage data blocks (the smallest data unit considered within
the storage system).

As such, Hercules does not provide its monitoring tools. However, in the scope of ADMIRE the goal is to
generate probes and metrics to monitor the Hercules system specifically and to provide a monitoring interface
compatible with the monitorization tools used in ADMIRE.

1.2 Document Structure

D5.1 is organized in four different chapters (in addition to the present Introduction). Chapter 2 describes our
design principles and a general overview of the resulting architecture. Chapter 3 is a deep-dive and details our
future technical implementation. To back-up our technical choices the chapter includes also discussions on
the nature of profiling. The API itself, which is the reference part of the document is described in Chapter 4.
Even if the conclusion in chapter 5 presents both a summary of our contribution and a road-map of our futures
works, interested readers should not overlook the Bibliography and detailed Terminology provided at the end
of this document.

6Object is data format to store data. Objects offer a much simpler API than files, as a result Object storage systems tends to offers
better scalability than file systems.
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Chapter 2

Sensing and profiling system architecture

In this section, we will first describe the challenges we faced in the design of our monitoring framework, then in
the light of these constraints, we will detail our proposed architecture. Eventually, we will discuss telemetry and
how precise node state will be monitored using common tools and additional plugins tailored for ADMIRE’s
needs.

2.1 ADMIRE Design Principles

The ADMIRE Performance Monitoring architecture follows the principle of separation of concern: within the
Monitoring System, data flows and control flows are separated. Furthermore, the standalone Monitoring Sys-
tem in ADMIRE does not functionally depend on any other technical bricks. Of course, the system remains
inter-operable and can be interfaced with other components in ADMIRE through high-level API. All the com-
munications between ADMIRE malleability software stack and the Monitoring System are made through the
interface between the Monitoring Manager and the Intelligent Controller.

An important ambition in ADMIRE is to leverage existing Open-Source project and avoid developing
things from scratch. Before re-implementing a component, we will review available alternative with the right
license model. Pushing code upstream to the right project is a more perennial investment than from scratch
developments, specifically in respect of code maintenance beyond the lifespan of the project.

2.1.1 Control Plane

The control plane in ADMIRE is internal between the sub-components of the Monitoring System, and external
between the Monitoring Manager and the other ADMIRE main software components. Figure 2.3 presents the
flow of information between the different components of the Monitoring System: Monitoring Manager, Mon-
itoring Daemons, performance Data Lake, Monitoring Display, and the Analytic Module. Within the Moni-
toring System, all the monitoring components reports solely and react only to commands from the Monitoring
Manager. This simple approach allows to implement and to develop the Monitoring System in a standalone
environment and drastically limits the complexity of testing.

The flow of control information within the Monitoring System will be detailed in Figure 2.3. The head of
the system is the Monitoring Manager: in terms of control it will send messages to all the Monitoring Daemons
running on each compute nodes. Additional control traffic will occur between the performance Data Lake and
the Monitoring Display, as well as between the Data Lake and the Analytic Module.

The integration of the Monitoring System within the broader framework of ADMIRE stack is handled by
the Monitoring Manager which will exchange control traffic with the Intelligent Controller. This control traffic
is the core topic of the API presented in Chapter 4.

2.1.2 Data Plane

The data plane for the performance system is more complex than the control plane. Some elements emit a steady
amount of information per second, while others have a less predictable flow. In ADMIRE, performance data

10
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can be collected from 3 different sources: the file system, the ephemeral file system, and the compute nodes. All
these streams of data are forwarded to the performance Data Lake.These flows to the performance Data Lake
are ingest flows, in terms of outgest flows ADMIRE Monitoring System supports 3 flows as well. One between
the Data Lake and the Analytic Module, one between the Data Lake and the live monitoring module, and one
from the Data Lake to the Monitoring Manager. In our view of the architecture, the Monitoring Manager will
constantly interrogate and browse the performance database to take the relevant decision (including initiating
control communications with the Intelligent Controller).

The exact implementation means of the data plane are discussed and presented in Chapter 3.

2.2 Problem Statement: On the Variable Nature of I/Os activities

Figure 2.1: Illustration of an I/O system with various media and link kinds.

The starting point of the sensing and monitoring infrastructure in ADMIRE is to characterize I/Os activities
in real-time on a whole system. Practically, it means our Monitoring System has to both instrument and map
performance data to create an intelligible performance state. However, as far as I/Os are concerned and given the
various devices present in an I/O subsystem, data-movement is a very general notion. As sketched in Figure 2.1,
I/O encloses many-things and can be relatively complex to describe as a whole, and this is what makes ADMIRE
challenging, requiring the controller to work at all levels. As far as measurement is concerned, I/O emitted by a
single UNIX process are rapidly dissolved in a much larger stream of I/Os, crossing layers and storage caches.
The consequence of this variability in I/O media, is that instrumentation – to be efficient – will need cooperation
from the target programs. Such programs, not only encompass the actual scientific application, but also the
associated I/O runtime. ADMIRE is an opportunity to cross these lines, bringing together parties which usually
work side by side, in order to create a coherent but yet open monitoring infrastructure. Transversely, our goal
in WP5 is to feed performance data inside a shared-database providing a representative performance state to
help other work-packages and particularly WP6 featuring the Intelligent Controller (IC) and WP3 malleability.

2.3 Measurement Sources

Points discussed in the previous Section, combined with the variable I/O interfaces considered even in the
project alone, advocates for a close collaboration with the I/O runtime to capture figures of interest. This will
have the advantage of not requiring instrumentation to guess the I/O behavior but instead, a clear state will
be derived thanks to dedicated instrumentation. Besides, some I/O subsystems are also relying on pre-loading
to capture relevant I/O calls, resulting in potential conflicts in case a similar approach was used for profiling.
Practically, it means that always-on measurements should be made available in a manner not impacting the ap-
plications. Indeed, compatibility with a wide-range of programs without modifications is a strong requirement.
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Naturally, application-state is not something we gave up upon, and specific means of attaching and detaching
from a running program will be developed to provide a wide performance spectrum to the Intelligent Controller.

Figure 2.2: Overview of the instrumentation data-flow.

As presented in Figure 2.2, instrumentation data-flow is made of two main classes. First, as discussed in the
previous paragraph, always-on measurements are managed separately and directed to a dedicated local storage,
the remote Data Lake will be fed by filtered versions of these measurements. As we will detail further later
in this document, Prometheus is the considered Time Series DataBase (TSDB) to handle such long-running
measurements. This then covers both the node status in general (e.g. resources) and the I/O interfaces. For this
later point, efforts will be dedicated to instrument involved I/O interfaces to report to the TSDB. A second kind
of measurement is originating from the application itself. As it is critical not to interfere with it in terms of
performance, we will develop a specific profiling tool capable of both attaching and detaching from an already
running application. It means that we plan to provide dynamic profiling capabilities similar to what a debugger
is capable of. Eventually, a more verbose information will be provided as profiles generated from the TAU
performance system or models build with Extra-P in the performance database.

Overall, all this information will be both processed and exposed through the dedicated WP5 API as pre-
sented in Section 4. Thanks to this interface, the IC will be able to retrieve important performance events as
they occur during the execution. Moreover, it is not excluded to allow the IC to directly access the Performance
Data-Lake for some applications such as machine learning where the more data, the better.

2.4 Resulting Architecture

The monitoring infrastructure in ADMIRE has to provide 4 key services,

1. Observability Observe the I/O consumption of each application process running on each compute node.
Data are collected on each compute node assigned to a peculiar job. The observability supports inter-node
malleability. For instance, if a new compute node is assigned at runtime to a job or some compute nodes
are de-allocated from a running job, the Monitoring System is able to tag dynamically the collected data
and to keep the performance data in consistency with the evolution of the job perimeter.

2. Scalable Telemetry Even if a job is executed on many computes nodes (i.e thousands), potentially on
the whole system, the transfer of the performance data is not altered, and the monitoring data are sent
efficiently across the system.

3. Persistence and archive Performance data collected during the execution of a job survive the execution
of the job itself. This means that the monitoring infrastructure is not limited to live observation, but can
be used for post-processing analytic.
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Figure 2.3: Overview of the monitoring infrastructure in ADMIRE.

4. Exploitation Data collected during the execution of the job are analyzed and meaning is extracted. The
exploitation stage needs to be flexible enough in order to allow advanced users (tools) to code their
analysis, and also to propose high-level metrics and analytic to detect and potentially solve performance
issues.

As displayed in Figure 2.3, ADMIRE instantiates these 4 services with the following components:

• Monitoring Daemon, this process is always running on every computing nodes of the system. The
Monitoring Daemon will probably be automatically started at boot time. This process is in charge of
handling commands from the Monitoring Manager and potentially to trigger more accurate and intrusive
performance monitoring.

• Monitoring Manager is the interface between the Monitoring System and the IC. The IC is the sole
component from the ADMIRE Software stack able to directly interact with the Monitoring Manager.
The purpose of this communication is twofold, first to analyze and detect potential issues in terms of I/O
performance, and second to adapt the monitoring filter to potential variation of an application (malleabil-
ity).

• Performance Database, or Data Lake. This database is in charge of logging all the performance infor-
mation collected across the system. We can expect to be oriented toward time series due to the temporal
nature of performance samples.

• Telemetry is the solution used to convey data from the compute node to the performance database. In
principle Telemetry is a simple process (remote copy) but it has to offer strong properties related to
scalability, reliability while still being low overhead and lightweight. Among the existing software tools,
not that many offer an implementation fulfilling all these criteria.
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• Monitoring Display is in charge of presenting key performance indicators extracted from the database
to system administrators. Typically, it is a dashboard summarizing the status of the production and
potentially handling notification for some specific events (components detected as dead peers and so on).

• Analytic Module is the module triggered on-demand to perform either prediction for the future perfor-
mance of a peculiar job or at the opposite to analyze the past executions of a specific binary. The modeling
will include Extra-P [24] and the analysis will provide clustering and other data science analysis.

2.4.1 Monitoring Daemon

The Monitoring Daemon will be always on and started during the boot process of all the compute nodes of
the facility. This daemon is lightweight, resides in user space and provides the main communication chanel
to the Monitoring Manager. The implementation of the Monitoring Daemon will be in two phases; an initial
early prototyping for proof-of-concept and validation of the integration, followed by a full features and more
complex implementation in C for efficiency purpose. Upon request from the Monitoring Manager, any Moni-
toring Daemon can attach a profiling process to an executing Application process to collect more performance
data. The Monitoring Daemon can also increase or decrease the sampling rate, again upon request from the
Monitoring Manager.

The monitoring Daemon will be developed from scratch for the ADMIRE project.

2.4.2 Monitoring Manager

The Monitoring Manager interacts with the Intelligent Controller. The Monitoring Manager is in-charge of
sending commands and control message to all the Monitoring Daemon in the system. The Monitoring Manager
is the interface of the Performance Monitoring System with the Intelligent Controller, therefore the Monitoring
Manager implement an API (see Chapter 4) to communicate with the Intelligent Controller. The API will be
implemented both as a Rest API and as a lower level RPC API. The Monitoring Manager will be hosted on
a dedicated server or on a server consolidated with the Intelligent Controller. Notice that the Fault Tolerance
features of the Monitoring Manager (redundancy) have yet to be addressed. The Monitoring Manager will be
developed from scratch for the ADMIRE project.

2.4.3 Performance Database

Performance information need to be recorded in a Database. The database has to provide high ingest capabilities
since some data streams will be always on. This database will be used for modeling and by the Intelligent
Controller to take key decisions. Therefore, the database needs to support modern and efficient browsing
capabilities. As any important component of the architecture, the database needs to be resilient when confronted
to fault. We are evolving in HPC grade environment with potentially huge amount of compute servers to
observe, and thus the database has to provide good scalability and at last we do expect a product mature enough
to avoid too many deployments and maintenance issues. Table 2.1 captures these criteria and compare some
solutions available on the market.

Some database solutions listed in the Table 2.1 have been designed specifically for performance record, they
offer time series as default data format. We believe this is the right approach for ADMIRE system and therefore
restricts ourselves among this sub-set of database. The most appealing technology in the current landscape of
time-series database seems to be Prometheus [7]. Prometheus is a framework dedicated to performance data
with a strong momentum, and it offers multiple plugins and bridges to other technologies. The query language
of Prometheus database, PromQL (Prometheus Query Language), offers interesting features. Early prototyping
should provide us more feedback on the strength and limitation of this query language. During the project
implementation, WP5 should re-evaluate the database landscape to assess the relevance of this initial choice.
At this stage, InfluxDB is considered as an interesting alternative to Prometheus.
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Product Data
scheme

Scalability Fault
Tolerance

Code Maintenance

Cassandra NoSql ++ + Apache 2.0 license and strong
community

HBase NoSql + ++ HBase tends to be less sup-
ported

MongoDB NoSql ++ + Maintenance of MongoDB at
scale complex

ScyllaDB NoSql ++ ++ Emergering as replacement
for MongoDB

RocksDB NoSql ++ + RocksDB is a storage library
(used by Cassandra) will re-
quire integration

InFluxDB Time
Series

++ + Free to start, pay for features

Prometheus Time
Series

++ ++ ++ emerging tech

LucidDB Time
Series

++ + no longer maintained

File Systems KV
store

++ ++ in-house development re-
quires high maintenance

OpenTSDB Time
Series

+ + Open Time series Database
reliance on HBase increases
maintenance 1

Table 2.1: Strength and weakness of database candidates to store performance records.

2.4.4 Telemetry

Telemetry is the software component in charge of transmitting the data collected in situ to a remote location. In
the ADMIRE case, the performance data harvested locally to the Performance Data Lake. Telemetry also used
for the Lustre performance data and the GekkoFS metrics.

The technical requirements for the telemetry solution are:

• Versatile, to handle a large variety of output formats from the monitoring tools.

• Scalable, support strategies prevent congestion at the database level.

• Resilient, failure of one of the nodes should not prevent the whole data flow.

Possible candidates are:

• Nagios 2 is a well established telemetry solution in the community. Its technology foundations were
laid in the 90s and the stack mostly administered via scripts and files. Nagios is mostly used to monitor
distributed services and offer logging capability. However, using Nagios to transfer MBs of performance
data every second is stretching out the product original specifications. Therefore, despite checking the
boxes on resilience and versatility some uncertainties remain about the ability to adjust to the volume of
performance information.

2https://github.com/NagiosEnterprises/nagioscore
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• Collectd 3, open source, mature, well accepted in the community. Collectd is generic in terms of data
payload and not specifically designed for time series data. Barrel-eye is using a forked version of Collectd
for its telemetry layer. Collectd can scale and is resilient. Furthermore even if Collectd was not originally
designed to transmit profiling information, we know from previous deployments in the field that it can
adapt to transfer performance data.

• Telegraf 4, open source (MIT License) modern high performance written in Go. Telegraf is a more recent
product with a good footprint in the Cloud market. Telegraf can be connected to many databases from
MongoDB to OpenTSB or InfluxDB. We have hands-on experience with Telegraf, confirming its ease of
deployment and management. The license model of Telegraf is open-source, free to use for upgrade. The
pricing model may prevent us to operate at scale. Despite the complete coverage of the 3 key criteria,
versatile, scalable and resilient, the license model may be challenging for ADMIRE.

• Prometheus 5, open source emerging standard, comes as a framework than as a single component.
Prometheus is released under Apache 2.0. The architecture is decoupled with many plugins developed as
add-on of the project. Prometheus includes the telemetry solution and the database system. Prometheus
covers the three-main requirement, versatile with a large number of plugins, resilient and scalable. The
license model is suitable for a Research project and it’s tightly integrated with an existing database.

From this analysis, we conclude that the most promising technology to use is Prometheus. The software
maintenance aspects are well covered, the legal issues are none existing with an Apache 2 license model, and
all the technical requirements are met. Therefore, Telemetry will be handled by Prometheus. Initial experiment
of integration of an existing solution relying on Telegraf have backed this initial choice. A simple translation
between the existing Telegraph out and a Prometheus exporter has allowed to integrate at minimal cost the
Telegraf communication system within the Prometheus set-up.

2.4.5 Monitoring Display

Live monitoring Grafana is the de facto standard for dashboard building with time series. We plan to have
ADMIRE’s Monitoring System to be interfaced with Grafana. Prometheus, Telegraph and the Collectd version
used in Barrel-eye are fully operational with Grafana. In terms of license mode, Grafana provides a free of
charge version and pay for feature extension. Initial tests with the free version of Grafana were positive,
thus ADMIRE will support Grafana as the main choice for its display system. However, we will investigate
alternative in case the licensing options of Grafana would become more restrictive. Netdata 6 is the main
candidate to replace Grafana. Netdata is open source with an GPL v3 license model with support from a large
community and state-of-the-art graphical features.

2.4.6 Analytic Module

Off-line Analysis Flame graph is a convenient representation for performance issues, it displays the call graph
jointly with temporal information. This is an efficient mechanism to single out hotspots. We consider that Flame
Graph should be a part of the available off-line analysis, but not the only possible representation. Specifically,
clustering techniques to detect similarity in Performance data should have a graphical output.

Prometheus embeds its query language PromQL 7 which offers high-level data manipulation operations.
PromQL is designed for time series and supports advanced commands. For instance:

predict_linear (node_filesystem_avail_bytes{job="node"} [1h ] , 3600) .

takes the metric and uses linear regression to extrapolate forward to its likely value in the future. Additionally
to the data processing, alert and notification can be added to the query would the result reach a peculiar value.

3https://collectd.org/
4https://www.influxdata.com/time-series-platform/telegraf
5https://developer.lightbend.com/docs/telemetry/current/plugins/prometheus/prometheus.

html
6https://www.netdata.cloud
7https://prometheus.io/docs/prometheus/latest/querying
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− name : node .rules
rules :
− alert : StorageCapacityExhaustedIn4Hours
expr : predict_linear (node_filesystem_free{job="node"} [1h ] , 4*3600) < 0
for : 5m
labels :

severity : page

The code displayed above implements an alert based on linear extrapolation. The natural language version of
the code would be: Send an alert if based on the data rate observed during the last hour the storage will be filled
up within the next 4 hours. The command avoids false positive, as test predict_linear will be called twice over
a 5-minute interval before sending the alert.

Consequently, the Analytic Module will be in charge of providing the notification mechanism foreseen in
ADMIRE. We do expect to deliver a library of functional block to ease the construction of more complex,
tailored notification for ADMIRE end-users.

2.4.7 Empirical Performance Modeling

To predict the future performance of a particular job in terms of computational and I/O resources, the ADMIRE
software stack will generate and utilize empirical performance models. In particular, the tool Extra-P (see
Section 3.4.3) will be used to derive empirical performance models describing the performance behavior of
a job, expressed in terms of a metric such as execution time and execution parameters (e.g. the number of
processes) change. In general, human-readable performance models, such as those resulting from analytical
reasoning, are one of the most powerful and insightful ways of describing and understanding the performance
behavior of applications. However, the main obstacles of analytical approaches are the required expertise and
the large amount of effort spent to gain insights. Extra-P automates this process by conducting a series of
small-scale experiments, varying execution parameters, to obtain an empirical data basis to create performance
models of each function of an application.

In the scope of the ADMIRE project and as a part of the Analytic Module, empirical performance models
for both computational and I/O activities of an application will be generated on demand as soon as predictions
are needed. This could be the case, for example, once the malleability manager from WP3 needs information
about the scaling behavior of an application to take the best malleable decision regarding the scheduling goals
(system throughput, energy consumption, etc.).
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Chapter 3

Sensing probes definition

In this chapter, we present more extensively each probe in the system. We describe both the nature of collected
data and how they are made persistent. We will first cover node-level monitoring and then move on to the
applications’ state. Moreover, we introduce extra components for online data reduction, improving measure-
ment resolution on a timescale. Eventually, we will conclude this Chapter with more verbose and necessarily
punctual measurements aimed at (1) describing internal application behavior and (2) providing a model for I/O
performance projection.

3.1 Node-Level Tracking

Node-level tracking covers the overall system state and, more abruptly, everything which is outside the moni-
tored application. As such data can easily become verbose as it encompasses a wide range of parameters that
we wish to expose to the IC, we cannot provide data in the form of traces but instead, we need to do a form
of data aggregation. It means that samples cannot have a very high resolution for every metric all the time.
Instead, and it is the object of this Section, we need to have a representative overview of the resource usage
on the system with an acceptable delay (tens of seconds). Still in some cases, for example, bandwidth metrics,
the IC might be interested in more verbose data. In this latter case, the Tree-Based Overlay Network (TBON)
infrastructure, that we will describe in Section 3.3 , is used to provide higher temporal resolution by sacrificing
spatial resolution (space-time trade-off).

To rely on an open infrastructure, leveraging existing work addressing such issues, we propose to rely on
the Prometheus [7, 27] Time Series Data-Base (TSDB). This database, used globally in cloud infrastructure,
comes with a rich set of data-collector and a rich analysis tools corpus. It means that developing tools targeted
at Prometheus and capable of meeting HPC standards and APIs is also opening these tools to a wider audience
while focusing our efforts on actual data-collection issues instead of reinventing the wheel.

3.1.1 Storing Metrics in a Time-Series Data-Base (TSDB)

There are several means of monitoring a set of nodes such as Nagios [2], Collectd [6], Telegraf [8, 23], and
Prometheus. What made this last option appealing, is that it features several data-collector and is associated
with a dynamic ecosystem of tools and users. Moreover, in ADMIRE, we try to expose as much data as possible
from the various components of the system to create awareness to allow a more informed decision. It means, we
want data to be accessible in many forms to enable WP6’s IC to perform some data mining. This advocates for
a monitoring solution providing some data-analytic capabilities, and Prometheus is featuring PromQL which
is a query-language targeting time-series. Overall, Prometheus is providing both a rich set of measurements
and allows us to exploit data in a transverse manner inside the Monitoring Manager. Other approaches do not
provide such flexibility and may require additional components to reach the same capabilities, for example,
Nagios has to be coupled with InfluxDB (a TSDB) to generate temporal views. Retaining Prometheus is then
choosing a well-known monitoring infrastructure that has the advantage of being relatively easy to deploy.

As presented in Figure 3.1, the Prometheus server relies on three main components. First, and at its core,
we find a Time Series Data-Base (TSDB) in charge of persisting performance measurements over time. This
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Figure 3.1: Overview of Prometheus architecture.

database, stored per node in the local file system, is fed thanks to a data scrapping module collecting the
information from various collectors which are practically HTTP endpoints. It means that periodically, the
server will query all data sources (collectors) to enrich the database, aggregating all entries in its TSDB. The
last component in Prometheus is the query interface, exposed through its HTTP server and allowing arbitrary
queries thanks to the PromQL language.

As we have seen, the node-level monitoring infrastructure can be addressed by Prometheus capabilities.
However, we will need to feed data inside this TSDB, and this is where node-level instrumentation efforts will
be deployed. Indeed, the project features multiple ad-hoc storages (GekkoFS, DataClay, Hercules), and we will
have to export their metrics to Prometheus. This will materialize itself in the development of a Prometheus
exporter featuring metrics of interest, based on the expertise from developers of each of the pre-cited ad-hoc
storage solutions. What is appealing in this approach is that the exporter itself won’t be tied to ADMIRE as
it will be available for other monitoring infrastructure. Indeed, there is already an interest for Prometheus to
monitor HPC machines and HPC oriented exporters are already available (see Table 3.1). Moreover, this will
be a direct open-source contribution to the project’s storage layers, enabling a new monitoring feature.

Figure 3.2: Prometheus’ integration in ADMIRE.

ADMIRE will develop new collectors for the ad-hoc storage systems and runtimes present in the project.
These new components are depicted green in Figure 3.2. Moreover, we will assess and leverage existing
exporters (depicted in orange) to increase our performance coverage, targeting non-exhaustively, node-level
metrics, GPU metrics, high-speed network metrics, etc. This rich set of measurements should be a facilitator
when building performance models, both at the level of WP5 but also centrally inside the Intelligent Controller.
Developing our exporters for ad-hoc storage layers will outline new metrics which were previously unreach-
able. For example, we will be interested in caches inside the I/O subsystem, anticipating their exhaustion.
Similarly, we will correlate I/O request rate and network bandwidth saturation, trying to derive new combined
performance indicators.

The Monitoring Manager, red in Figure 3.2 will then be able to aggregate data from the TSDB by issu-
ing queries to respond to WP6’s IC through its API. Such queries will be able to target varying time ranges,
enabling retrospective analysis. This manager will then act as both a data-aggregator and a controller for the
measurement process. Indeed, and as we will further detail in the next Sections we also plan to rely on more
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verbose instrumentation techniques.

3.1.2 I/O Runtimes State

As far as ad-hoc I/O runtimes are concerned, we will develop corresponding Prometheus exporters. These
exporters shall, as aforementioned, eventually be part of the respective ad-hoc storage solutions. Overall, an
exporter is a relatively simple code, particularly if we rely on one of the existing Prometheus client libraries to
provide the glue with the TSDB. In fact, we estimate most of the design effort to be turned towards defining
the actual instrumentation points in the code-base. Indeed, we would like to expose metrics that are usually
out of reach, outside a holistic framework such as the one in ADMIRE. Therefore, we would like to track the
following elements (non-exhaustive):

• Internal cache levels to predict potential exhaustion;

• Meta-data operation count and their nature as such operations are often the weak point in parallel file-
systems;

• Estimated data-transfers reads and writes in various categories (local cache, back-end file-system, ...);

• Blaming of the corresponding media for data-transfers (to local SSD, to network, to pNFS, ...).

Naturally, it is of interest to converge towards a relatively unified set of counters between our ad-hoc sys-
tems, and the final goal is to be able to describe each of them. Still, the Monitoring Manager will act as an
adaptation layer from WP5’s API consumers’ point of view to provide a unified interface, even if there are
slight variations.

3.1.3 Node-Level State

As far as monitoring the node is concerned, we will rely on stock exporters. Indeed, this task is regular
for Prometheus. Looking at the exporter list, we can already identify interesting data sources as we already
illustrated in Figure 3.2.

Name Description

Lustre exporter for Lustre metrics

Slurm exporter for Slurm status

Infiniband exporter for Infiniband HCAs

Nvidia exporter for Nvidia GPUs

GPFS exporter for IBM GPFS

node_exporter exporter for node-local metrics (hardware)

Table 3.1: List of exporters which will be considered for integration.

As presented in Table 3.1, Prometheus already provides a rich set of measurements without requiring spe-
cific developments from our side. It means that, for example, we may combine any of these existing metrics
with the new ones we will develop to derive new metrics leveraging PromQL. This is then both a way to rely
on existing proven technologies while ensuring our efforts are focused on what is missing in the node-level
monitoring field. We will make HPC tools available in the Prometheus ecosystem, adding specifically designed
probes. Moreover, it is not excluded that we use other collectors (not listed in Table 3.1) or that we develop
other ones depending on future needs we may identify.

20

https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/exporters/
https://github.com/HewlettPackard/lustre_exporter
https://github.com/cea-hpc/slurm_exporter
https://github.com/treydock/infiniband_exporter
https://github.com/mindprince/nvidia_gpu_prometheus_exporter
https://github.com/treydock/gpfs_exporter
https://github.com/prometheus/node_exporter


CHAPTER 3. SENSING PROBES DEFINITION ADMIRE

3.1.4 Application State

As previously mentioned, application state in ADMIRE is seen as a more verbose data-source. It means that we
do not intend to generate time-series out of it. Still, we would be interested in – applying the same logic as what
we do for I/O – extracting metrics from some runtimes. A common runtime is the Message-Passing Interface
(MPI) runtime, which is used to exchange message between multiple nodes. MPI features a very dynamic tools
infrastructure which has recently evolved with callback capabilities in MPI 4.0 [13]. Moreover, the MPI forum
is currently devising QMPI [10] which is the successor of the PMPI interface which was previously based on
weak-symbols for loader interposition. With QMPI in the near future, multiple tools will be able to attach to a
given MPI runtime instance. This would circumvent the pre-loading limitations preventing multiple tools [25]
or runtimes to intercept common calls.

Figure 3.3: MPI collector for Prometheus.

As shown in Figure 3.3, we plan to develop an MPI collector for Prometheus, made of two components.
First, libraries either preloaded (PMPI case) or loaded by the MPI runtime (QMPI case) and an aggregator acting
as the collector. In Figure 3.3, libraries are referred as Performance Counters and the aggregator is in charge
of performing Data Consolidation. Our goal is then to be able to track various MPI calls and their intensity on
a per-node basis without interfacing in HTTP to individual MPI processes, which can be numerous. To limit
performance overhead, we plan to rely on a shared-memory segment to exchange counters. In addition, we will
explore means of exposing MPI-T variables [15, 22] – describing runtimes internals. This approach will then
open MPI to the Prometheus monitoring world and will be compatible (if recompiled) with all MPI runtimes.

3.2 Tracking Applications

When a given program runs, it can sometimes be of interest to profile it in a more verbose manner, for example
to determine the I/O interfaces which are in use or to blame sources of I/Os at the source-code level. For
example, one may consider a cluster which faces adverse I/O patterns from some applications (i.e. creating
thousands of files), it would be possible to attach and extract source line information to come back to the
developer. The same may apply for inefficiencies in the I/O pipeline, such as random access patterns or small
blocks. What will be observed macroscopically through the I/O server status, will have to be blamed to the
application with as much precision as possible. Indeed, I/Os are transverse in an HPC system and it is not easy
to pinpoint a library or a given line of code in a large corpus of code owned by multiple individuals.

This Section will present tracks to implement such monitoring tools. We will first explain why it is not
practical to use standard tools (e.g. LD_PRELOAD) in this case, and why we opted for dynamically attached
tools. In a second time, we will present our prototype tool, used to study the feasibility and conclude with
multiple tracks that we would like to explore as the development goes.

3.2.1 On the Challenges of Always-on Monitoring

In ADMIRE, one of the main goal of WP5 is to maintain a control and measure feedback-loop between all
of its components. When it comes to applications, the common instrumentation mean is to either pre-load the
interception library or link/compile an instrumented version of the code. This naturally leads to (1) specific
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launch and compilation instructions and (2) potential overhead associated with the measurement. This second
point could be mitigated using selective instrumentation (bypasses in the instrumentation wrappers) but the first
point would remain.

Besides, some I/O frameworks rely on pre-loading to capture the I/O interface, it means that our tool should
never compete with the I/O layer when trying to measure the I/O layer itself. It is the reason why inserting the
tool inside the application was seen as a potential source of issues. Instead, information about the I/O layer
would be retrieved at the I/O API level. Still, we do not want to give-up on metrics relative to the application
state, and therefore, we had to devise alternative approaches as we will present in the next Section.

3.2.2 Dynamic Instrumentation

In ADMIRE, we would like the IC to order us to trace a given application, for example, as there is a strange
I/O behavior on the node. Then the IC, will call the Monitoring System API and ask the Monitoring Manager
to perform measurements. Practically, it means that an uninstrumented program will be instrumented for a
short period of time. Naturally, this should be transparent for the end-user, indeed the code may slow-down
temporarily but once detached, the program will resume its regular course.

Figure 3.4: Illustration of dynamic instrumentation capabilities.

As presented in Figure 3.4, We would then like to behave as a debugger, attach to the process to monitor its
doings, and detach when it is not relevant anymore. This would allow us to punctually inspect the program’s
behavior and disconnecting from it afterward. To experiment with this idea, we developed a prototype external
I/O tracer with limited features. As a starting point, we considered syscall tracing with ptrace, a simple and
relatively portable way of monitoring a target program. Doing so led to a behavior somewhat similar to what
strace does, but only targetting I/Os. As soon as the tracing process will attach, it will register on syscalls
and place accordingly breakpoint on functions of interest. The advantage of this model is that it does not
require any form of previous knowledge or instrumentation in the binary, easing deployment. Then, all syscalls
will be trapped and inspected. For functions, one could use either hardware or emulated breakpoints as GDB
does to trace calls. In addition, again similarly to GDB, it is possible to capture the call-stack each time an
event occurs, providing Event-Based Sampling capabilities outside the program in a trivial manner. In terms
of implementation, as shown in Figure 3.4, we plan to have the Monitoring Manager forking an instance of the
tau_perf tool specifically developed for the purpose. This tool then attaches to the target program. Dealing
with communication back to the manager, we will provide a JSON data-stream through a preset file-descriptor
(pipe) at the Monitoring Manager level.

Despite having the advantage of tracking every syscalls, this approach may lead to some overhead when
attached as ptrace relies on signaling between the tracer and the tracee. This motivated us to look for more
advanced interfaces that will be object of the next Section.

3.2.3 Foreseen Dynamic Instrumentation Interfaces

Linux systems have evolved in terms of measurement capabilities. In particular, the performance measurement
interfaces available in the kernel multiplied and new features for syscall trapping were added. In particular,
new instrumentation support, considering either Linux Perf or the Extended Berkeley Packet Filter (eBPF [5])
may provide valuable system level probes to feed our measurements. Moreover, Linux Perf has some attach
and detach capabilities which would match what we achieved with ptrace but without the signaling overhead,
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Figure 3.5: Observation points within the kernel as supported by Linux and its BCC tools suite.

samples being collected with the help of the kernel. As far as eBPF is concerned, it supports code injection to
execute commands when certain rules are met, this is a bare metal manner of reacting to any system event. One
can see how such model would be of interest to raise alerts for example. These more advanced interfaces and
associated scenarios will be considered in the pursuit of the development of the dynamic application tracing
tool to enrich its output while limiting its overhead.

Linux already supports a large variety of tools to observe the kernel stack, as illustrated in figure 3.5. Most
of these tools are already built on the top of eBPF which offers as well the option to write code to fit more
specific needs. The short code excerpt provided below is an excerpt of Brendan Gregg’s blog 1.

BEGIN
{

printf ("Tracing block device I/O... Hit Ctrl-C to end.\n" ) ;
}

kprobe :blk_account_io_start
{

@start [arg0 ] = nsecs ;
}

kprobe :blk_account_io_completion
/@start [arg0 ] /

{
@usecs = hist ( (nsecs − @start [arg0 ] ) / 1000) ;
delete (@start [arg0 ] ) ;

}

The code will be executed within the Kernel. The execution is actually made within a Virtual Machine thus
preventing the risk of kernel crash. The second security aspect is that the code is loop-free. The semantic of
eBPF script does not support return edge in the control flow. Therefore, the code is guaranteed to end, thus
preventing the risk of Denial of Service.

We plan to investigate eBPF or eBPF tools is order to retrieve performance metrics not only at the applica-
tion level but as well within the Kernel.

3.3 Data Reduction Using a Tree-Based Overlay Network (TBON)

For now, we have presented (1) node-level metrics with Prometheus and (2) application-level metrics with the
TAU_perf tool. Both these measurements were considered due to both their low-overhead nature and their
descriptivity. Still, in some cases more verbose measurements might be needed as we will further elaborate on
in this Section.

1https://www.brendangregg.com/blog/2019-01-01/learn-ebpf-tracing.html
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3.3.1 Motivations

We now propose to consider the case when the system has to react to an abrupt change in performance. It means,
that in complement of the medium resolution measurement at node-level, and of the punctual measurement
inside the application, an intermediate set of metrics is needed. All our current metrics are spatially discrete,
it means that we generate a set of points for individual components (nodes, applications). However, in this
Section, we will cover a measurement which has spatial reduction at its basis. Thanks to this space-time
trade-off, we will be able to have less spatial resolution while greatly improving the temporal resolution.

Figure 3.6: Sample Tree-Based Overlay Network averaging data-points.

To do so, and as presented in Figure 3.6 we propose to leverage what is called in the performance measure-
ment field a Tree-Based Overlay Network (TBON) [4, 21]. Such network is simply a static reduction network
overlaid atop a running process to return a constant stream of data-points. Considering the wide variety of
probes we will have at node-level, we will spatially reduce some of them to obtain some system-wide measure-
ment points with high temporal resolution.

3.3.2 Proposed Implementation

If we look at Figure 2.2, an instance of the Monitoring Daemon will run on each node. This daemon will
be in charge of providing the WP5 API (see Section 4) by interfacing to previously mentioned measurement
sources. We plan to leverage all these instances of the Monitoring Daemon on the whole supercomputer to
implement the TBON. We will use a discovery mechanism (file-system or WP6 database) to interconnect all
these instances in a tree-based topology. Data points will be sent at a regular pace to be reduced towards the
tree root. Viewed from the root, we will obtain a time series of system-wide performance. The IP connection
layer will be leveraged for this purpose. The main reason for this is that on most super-computers, the high-
performance network is usually seconded by an administrative network relying on Ethernet. Using regular TCP
connectivity is then a way to decouple traffic, trying to limit performance interference. Moreover, this traffic
should be relatively low even compared to of-shelf interconnects thanks to its hierarchical nature. To illustrate
this scalability, consider that we are willing to reduce n metrics of s bytes each, in a binary tree each node
would have to receive two-stream of data (from children) and send up one stream consisting of incoming data
contributions complemented with local metrics. We can easily model the resulting overall bandwidth (in/out)
in bytes per second for a given measurement period τ as B(n, s, τ) = 3ns 1τ .

As shown in Figure 3.7, TBONs are very efficient in terms of bandwidth while allowing interesting tem-
poral resolution. In this example, we consider 100 metrics of 8 bytes each (doubles or 64 bits integers). For
example, a bandwidth budget of 100 kB/sec allows for a temporal resolution τ of 23.44 millisecond. If we
now compare this figure to the default scraping period in Prometheus, 60 seconds2, such infrastructure provides
non-negligible improvements in terms of temporal resolution (at the cost of the spatial one).

Note that we may have to adapt the collectors implemented in the project to provide such high-frequency
endpoints, it means that we may consider additional means of transferring data-points if the HTTP request is
too expensive. Developments done in the context of the MPI collector and its local data-reduction framework

2We plan to use lower values in the context of the project (around 5 seconds).
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Figure 3.7: Resulting per-node (in/out) bandwidth in KB/s for reducing 100 entries of 8 Bytes in function of τ .

(see Section 3.1.4) may lead to a common infrastructure to share data-points, in particular alternative coupling
methods with improved performance will be considered (shared-memory segments, Cross-Memory Attach
(CMA), message queues, ...).

3.3.3 Resulting Metrics

The ability to generate high-resolution time series can be of importance when it comes to taking decisions
in terms of overall performance. Indeed, as previously discussed, the TBON will only provide aggregated
performance. Still, it will give insight on the peak system performance which is the main metric of interest in
HPC. In machine learning it is of paramount importance not only to have many values to build the interference
model but also to have some key fitting metrics to train a given model. The TBON has been devised to provide
such key metrics, they will be relatively compact as we do not plan to have more than a hundred system-wide
counters. These counters will give in close to real-time some key performance indicators, among which we
find:

• Overall read and write bandwidth

• Total network bandwidth (derived from exporters)

• Number of active data-streams

• Overall used and free space on each storage tier

• Overall caching capabilities for each storage tier

These aggregated metrics and their meaningfulness will be the object of discussions with the modeling
components part of WP6. Moreover, during our exploration leading to the development of the individual
collectors we will determine what are the valuable metrics thanks to exchanges with the developers of each
individual components.

3.4 Discrete Data-Sources

Up to now, we have covered mainly the always-on Monitoring System, first with Prometheus and then with
sampling tools capable of attaching to a running program. Indirect means of measuring running applications
are privileged not to interfere systematically with all binaries running on a given system. Indeed, doing so
would be a source for portability issues as mentioned in Section 3.2.1. Still, it is interesting to punctually run
full-fledged tools to capture the best picture possible of a given application – this is the object of the current
section.
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3.4.1 Articulating Punctual Measurements

Both the TAU performance system and the tool Extra-P will run in the background. TAU will be used punctually
to derive more verbose performance profiles using its state-of-the-art instrumentation chain. And Extra-P will
be leveraged in a more indirect manner, reading measurements from the performance database (including TAU
profiles) and then generating performances models, also stored for later use.

Figure 3.8: Sample data-flow for asynchronous measurements.

As shown in Figure 3.8, both TAU and Extra-P will interact with the performance database. Extra-P will be
consuming performance data (of any kind) to generate a performance model. With TAU things are a bit more
complex as TAU is a data-collector, meaning it runs with the source program to generate profiles. Practically,
we may ask users to punctually run a TAU-instrumented binary to generate results in the performance database.
However, we are willing to explore means of doing performance sand-boxing. Indeed, users generally spend
time debugging their programs as otherwise, they may not work, still, performance measurement is often a
side-concern as it is only a medium obstacle to producing the results. Yet, if we turn the table and look from
a whole-machine point of view, running inefficient programs, for example, over-scaled with 5% efficiency, is
simply a waste of resources and can artificially lengthen waiting queues. Therefore, for the particular case of
TAU, we will leverage Linux name-spaces capabilities more widely known as containers to re-run instrumented
jobs without issuing (even accidentally) artifacts to the permanent file system. Thanks to a coarse-grained
selection using the aforementioned metrics, and then by rewiring paths in a temporary container, we should
be able to generate off-line profiles without users-cooperation. This way, by running hashed binaries with the
same command line, we can ensure that most applications are profiled with varying parameters even without
the user noticing it.

3.4.2 Performance Profiles using TAU

TAU [26] is a profiling tool that needs to run alongside the application to generate performance results. It can
rely on several instrumentation methods to capture the program’s behavior. First, the application might be com-
piled with the TAU compilation wrappers, issuing an instrumented binary (source-level rewriting, library/linker
interposition [1,22]). Despite potentially providing more precise measurements, including phases and potential
source-to-source transformations (see how Opari [20] used to work for OpenMP) this will not be practical in
our case as recompiling the program is generally not trivial.

Instead, we are willing to explore means of runtime interposition, which is done through library pre-loading.
Moreover, measurements which were previously requiring source-level instrumentation are now feasible at run-
time thanks to the development of tools-interface in common HPC runtimes such as MPI-T [16,22] for MPI and
OMPT [9] for OpenMP, in addition, phase information in ADMIRE should be provided by the in-application
interface featured in WP7. It means that privileging runtime instrumentation won’t impede measurement accu-
racy. One can either wrap function calls using interposition, doing direct instrumentation, it is also possible to
sampling, punctually interrupting the program to capture the program counter and associated stack. It is even
possible to combine both doing sampling including when entering functions of interest through event-based
sampling [12, 30]. As of today, TAU is generally used in an Event-Based Sampling approach as it is providing
relatively accurate measurements without causing too much overhead and without any form of recompilation
(just adding tau_exec to the command line).

For ADMIRE, we want to avoid excluding any kind of measurement as TAU is capable of generating several
outputs ranging from a compact performance profile to a full temporal event trace in OTF2 [11]. Depending
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on the interactions with Extra-P and other modeling components in WP6 and WP3, we will generate what
is of interest as the project unfolds – adapting measurement verbosity. As far as the interfacing with the
performance database is concerned, TAU already has such a database in the PerfExplorer tool [14] which can
aggregate multiple profiles to generate a cross-experiment view, in this framework, it was also coupled with
multiple standard data-bases. These existing capabilities will be leveraged and extended accordingly to fit in
the ADMIRE framework in order to fill the performance database.

3.4.3 Performance Models using EXTRA-P

ADMIRE includes a component named Malleability Manager. This component is developed within WP3 and
allows application processes to be dynamically re-shuffled, consolidated or dispatched on a different set of
computing nodes. The core idea behind malleability is to adjust the topology of an application depending on
nodes failures or performance fluctuations. To allow the Malleability Mananger to choose the right config-
uration of an application achieving thereby the scheduling goals, the malleability manager needs to predict
the computational and I/O activities of the application running on a specific number of nodes. This is where
Extra-P comes in. Extra-P models the performance behavior of an application as a function of its execution
parameters e.g. the number of processes or the problem size, enabling the prediction of the application per-
formance at different scales. For that, the tool requires a set of small-scale performance experiments. More
precisely, to model a parameter, Extra-P needs at least five experiments with unique values for the parameter to
be modeled while all remaining execution parameters stay constant. For modeling an application considering
two application parameters, for example, Extra-P requires at least nine different measurement points. Ideally,
several samples are collected at each measurement point. Subsequently, the median values of the measured
performance metrics are computed and used for modeling. This reduces the influence of the system noise on
the performance measurements and thus helps to the created the models. In general, the more measurement
points and repetitions are performed, the more accurate the created models are.

Extra-P automatically creates performance models of all instrumented application functions, allowing an
in-depth analysis of specific kernels as well as an overall estimation for the entire application. Hence, the
generated performance models heavily rely on the application instrumentation and the sampling performed. If
a function is not instrumented or profiled, Extra-P can not create a performance model for that function as the
required data is missing.

Currently, Extra-P generates performance models describing the computation and communication of an
application’s functions. In the scope of this project, it is intended to extend the capabilities of the tool to allow
for the generation of I/O requirement models. Doing so will allow the malleability manager to take the suitable
decision based on both computational and I/O activities.

To generate the previous described performance models, the profiling data needed has been addressed in
this WP. Moreover, the locality of the data has been as well agreed on. Using the profiling data stored in the
database, Extra-P will be invoked by the intelligent controller at specific intervals to generate for a particular
application its corresponding performance models. Whenever the application is scaled (expand/shrink) new
sampling data will arrive at the database, refining the generated performance models. Finally, the intelligent
controller forwards the generated models to the malleability manager, aiding the manager in its malleable
decision.
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Chapter 4

Sensing and profiling system API

In this Section, we will further detail the Application Programming Interface (API) associated with WP5. This
interface is aimed at both providing profiling and hardware discovery capabilities. In the wider context of
the project, as presented in the original proposal, we are willing to implement a feedback-loop implementing
control and measure. Control is impersonated by the Intelligent Controller (IC), and measure is mostly provided
by WP5’s instrumentation layer. This central position in the project justifies that we make sure to provide
as much metrics as possible, particularly if machine-learning methods are to be leveraged. This last point
motivated some of our choices for more standards methodologies to make sure we quickly forward a rich set of
measurements. We will now first provide an overview of the Sensing and Profiling Interface design, then after
a brief discussion of its implementation, we will provide a description of the individual calls constituting the
resulting interface.

4.1 General API Layout

We will now have a closer look at this API. The API between the Monitoring Manager and the Intelligent
Controller is built in three different layers that we are now going to detail in following paragraphs.

As WP5 is planned to deploy a daemon on each node of the system to fulfill its always-on measurement
duty, it has been judged reasonable to rely on it for resource monitoring and discovery. The purpose of
this interface is twofold, (1) it enables the discovery of the hardware resources on each node (mount-points,
network cards, ...) and (2) it allows for the listing of associated performance metrics (bandwidths, free space,
file-descriptors, ... ). This interface will extract its data from Prometheus and from both proc and sys file-
systems. It can be classified as coarse-grained monitoring.

A second aspect, closer to the applications is node and process discovery, in WP5 we plan to work at
Process IDentifier (PID) level to reach for any process, it allows us to build tools which are not dependent
on the ADMIRE meta-data layer to operate. WP5 will allow a node listing, as each node will be able to list
processes and their associated resources. We also plan on enabling process status monitoring to enable WP6 to
inquire of the termination of a given process indirectly. On this particular interface, it is not excluded that WP6
may absorb it later on to mirror it in its state data-base, in this later case all these information would be derived
from the application manager (see Figure 1.1 in the WP7 Applications box).

The third part is dedicated to application performance monitoring. Its goal is to enable dynamic applica-
tion monitoring depending on the IC’s needs. Thanks to this interface, it will be possible to generate a profile
during a given time slice. We also plan on providing more lightweight functions for I/O profiling storing their
results as a vector-space (application behavior, I/O patterns). Vector-space is a layout particularly convenient
to fill real-time models such as neural networks classifiers which might be used in WP6. A second aspect, is
providing the performance model as generated by Extra-P. This model built from previous application runs will
be used by WP6 and forwarded to malleability manager in WP3 which in turn will project it to current machine
state to yield the best configuration possible.

The last component that we can outline is the control interface. This interface is solely dedicated to the
Intelligent Controller (WP6) to enable process registration and sampling rate fine-tuning. Before dwelling into
more details in this interface, we propose to quickly discuss the articulation of these respective interfaces.
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4.2 Implementation Considerations

Before describing each call turn-by-turn, it is important to describe how this interface will be deployed and
exposed, which is the goal of this section. As mentioned at the beginning of this document, WP5 will deploy two
main components, (1) the Monitoring Daemon and (2) the Monitoring Manager. The Monitoring Daemon will
run on each node, whereas the Monitoring Manager will drive all instances of the Monitoring Daemon. The tree
implementing the TBON will also be used for command, indeed, when data are reduced up, it is also possible to
send data down using a trivial breadth-first search routing algorithm. Doing so will prevent bottlenecks between
nodes, avoiding all-to-all connectivity patterns and supporting potential broadcast commands to all nodes at
once. If there is a tree, it has a root, and this is one of the main reason for differentiating the monitoring daemon
and the manager, the latter featuring the public WP5 interface.

Figure 4.1: Functional diagram for the measurement facilities in WP5.

As shown in Figure 4.1, instrumentation daemons will be connected in a tree-shaped layout. At the root
we will find the monitoring manager which will issue commands on the tree. Dealing with the communication
between daemons we will leverage HPC class RPCs (through the Mercury RPC stack), same thing for the
WP5 API which will also be made available through this high-performance conduit. However, we consider as
important to also provide a TCP exposure, particularly given the reduced amount of data which will circulate
the tree. Moreover, for fault-tolerance it is critical to have a connected protocol in place to be able to identify
quickly and reliably failed nodes. Indeed, in HPC network stacks involving OS bypass capable devices, failure
is often only partially handled, making fail-over more difficult. In our case, as we implement an always-on
daemon, it is crucial to stay up and running including in some adverse cases such as a node promptly rebooting
– the IP layer will play an important role in mitigating such cases. As a side effect, having IP to initially build
the system (while considering an alternative in the design) will allow faster prototyping and also portability
to most systems which generally feature an IP layer. Eventually, this opens the systems status to punctual
query through IP if needed, for example, directly addressing a given node instead of using the whole tree, the
monitoring manager may even implement such bypass. Overall, despite this document mainly discussed the
scalability of our measure, scalability of control has been considered in how monitoring will be deployed.
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4.3 Resource Labeling

In the rest of this Chapter, the various functions will be targeted generally at a given PID running on a given
node, it has been considered that such identifier could be summarized in a single union targeting a 64bits integer,
with the most significant bits, addressing the node and the least significant bits the PID. This has the advantage
of simplifying our interface gathering two parameters in a single one. Moreover, these two parameters are
strictly positive, meaning that we decide by convention to consider zero as a wildcard. It has the drawback
of breaking the C counting convention, but conversely has the advantage of using the full 32 bits dynamic
associated with each entry by dropping the sign bit. Therefore, we can outline the ADM_profile_id_t
node identifiers using the following code excerpt:

/ * *
* @br ie f D e s c r i p t o r f o r a g i v e n Node or PID
* @note 0 i s a w i l d c a r d
*
* /

t y p e d e f un ion
{

s t r u c t
{

u n s i g n e d i n t node_id ; / * *< T a r g e t Node− Id * /
u n s i g n e d i n t pid ; / * *< T a r g e t PID * /

}members ;
uint64_t id ; / * * Encoded Node + PID * /

}ADM_profile_id_t ;

Ih the following sections, the Doxygen code will be presented jointly with an algorithmic pseudo-code of
each API functions.

4.4 Resource Monitoring and Discovery

All the Resource Discovery functions are to be called from the Intelligent Controller to the Monitoring Manager.
All these functions are of type Pull: information to be extracted to the Intelligent Controller from the Monitoring
Manager.

Functions dedicated to Persistent Memory Resources (Storage)

/ * * @br ie f t h i s i s t h e system −wide h a n d l e f o r a s t o r a g e r e s o u r c e * /
t y p e d e f uint64_t ADM_profile_storage_res_id_t

/ * *
* @br ie f L i s t s t o r a g e d e v i c e s on a g i v e n Node
*
* @warning R e t u r n e d v a l u e s a r e s t a t i c a r r a y s n o t t o be f r e e d
*
* @param [ i n ] i d t a r g e t P r o c e s s / Node ID
* @param [ o u t ] c o u n t number o f o u t p u t e l e m e n t s
* @param [ o u t ] r e s _ i d s a r r a y o f s t o r a g e r e s o u r c e s ID
* @param [ o u t ] bandwid th a r r a y o f bandwid th
* @param [ o u t ] m o u n t p o i n t s a r r a y o f m o u n t p o i n t s
* @param [ o u t ] f s t y p e a r r a y o f m o u n t p o i n t s t y p e s ( a s i n f s t a b )
* @return i n t non n u l l on e r r o r
* /

i n t ADM_resStorList (ADM_profile_id_t id ,
size_t * count ,
c o n s t ADM_profile_storage_res_id_t **res_ids ,
c o n s t uint64_t ** bandwidth ,
c o n s t c h a r ** mountpoints ,
c o n s t c h a r ** fstype ) ;

/ * *
* @br ie f R e t u r n c u r r e n t s t a t e o f a g i v e n s t o r a g e d e v i c e
*
* @param [ i n ] i d t a r g e t P r o c e s s / Node ID
* @param [ i n ] r e s _ i d r e s o u r c e i d e n t i f i e r t o que ry
* @param [ o u t ] u s e d _ s p a c e
* @param [ o u t ] o v e r a l l _ s p a c e
* @param [ o u t ] t imes t amp
* @return i n t non n u l l on e r r o r
* /

i n t ADM_resStorStat (ADM_profile_id_t id ,
ADM_profile_storage_res_id_t res_id ,
uint64_t *used_space ,
uint64_t *overall_space ,
uint64_t *timestamp ) ;
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Name: ADM_resStorList
input : ADM_profile_id_t id
InOut : size_t∗ count
InOut : ADM_profile_storage_res_id_t ∗ ∗ res_ids
InOut : String∗ bandwidth
InOut : String∗ mountpoint
InOut : String∗ FS type (ramfs, nvme ...)
output: int error_code
Description:
This function lists all the storage resources available on a given node, the resources are detailed by
their key attributes. In case of failure an error code is returned.

Name: ADM_resStorStat
input : ADM_profile_id_t id
input : ADM_profile_storage_res_id_t res_ids
InOut : uint64_t∗ used_space
InOut : uint64_t∗ overall_space
InOut : uint64_t∗ timestamp
Description:
This function returns capacity related information for a given storage resource on a specific node. The
function fills up all the data structures passed as argument to describe the current state of the storage
device. A call to this function returns 0 for a success or an error code.

Functions dedicated to Memory Resources

/ * * @br ie f t h i s i s t h e system −wide h a n d l e f o r a memory r e s o u r c e * /
t y p e d e f uint64_t ADM_profile_memory_res_id_t

/ * *
* @br ie f L i s t memory d e v i c e s on a g i v e n Node
*
* @warning R e t u r n e d v a l u e s a r e s t a t i c a r r a y s n o t t o be f r e e d
*
* @param [ i n ] i d t a r g e t P r o c e s s / Node ID
* @param [ o u t ] c o u n t number o f o u t p u t e l e m e n t s
* @param [ o u t ] r e s _ i d s a r r a y o f memory r e s o u r c e s ID
* @param [ o u t ] k ind a r r a y o f memory d e v i c e k i n d s
* @param [ o u t ] is_numa a r r a y o f b o o l e a n s i n d i c a t i n g NUMA e f f e c t s
* @param [ o u t ] a t t a c h e d _ c o r e _ i d s a r r a y o f a r r a y s l i s t i n g a t t a c h e d c o r e s
* @return i n t non n u l l on e r r o r
* /

i n t ADM_resMemList (ADM_profile_id_t id ,
size_t * count ,
c o n s t ADM_profile_memory_res_id_t **res_ids ,
c o n s t uint64_t ** bandwidth ,
c o n s t c h a r ** kind ,
c o n s t i n t * is_numa ,
c o n s t i n t ** attached_core_ids ) ;

/ * *
* @br ie f Re t u r n c u r r e n t s t a t e o f a g i v e n memory d e v i c e
*
* @param [ i n ] i d t a r g e t P r o c e s s / Node ID
* @param [ i n ] r e s _ i d r e s o u r c e i d e n t i f i e r t o que ry
* @param [ o u t ] u s e d _ s p a c e
* @param [ o u t ] o v e r a l l _ s p a c e
* @param [ o u t ] t imes t amp
* @return i n t non n u l l on e r r o r
* /

i n t ADM_resMemStat (ADM_profile_id_t id ,
ADM_profile_memory_res_id_t res_id ,
uint64_t *used_space ,
uint64_t *overall_space ,
uint64_t *timestamp ) ;
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Name: ADM_resMemList
input : ADM_profile_id_t id
InOut : size_t∗ count
InOut : ADM_profile_memory_res_id_t ∗ ∗ res_ids
InOut : uint64_t ∗ ∗ bandwidth
InOut : String∗ Kind
InOut : boolean∗ is_numa
InOut : int ∗ ∗ attached_core_ids
output: int error_code
Description:
List all memory devices and precise their nature for the node passed in parameter. Where the nature of

a memory device could be either HBM (High Bandwidth Memory), swap, RAM or other type to be
defined. The function returns 0 for success or an error code otherwise.

Name: ADM_resMemStat
input : ADM_profile_id_t id
input : ADM_profile_memory_res_id_t res_ids
InOut : uint64_t∗ used_space
InOut : uint64_t∗ overall_space
InOut : uint64_t∗ timestamp
output: int error_code
Description:
Returns the current state of the specified memory device on a given node. The state is provided by the

pass-through pointer arguement. The function returns 0 for sucess or an error code in case of failure.

Functions dedicated to Networking Resources

/ * * @br ie f t h i s i s t h e system −wide h a n d l e f o r a ne twork r e s o u r c e * /
t y p e d e f uint64_t ADM_profile_network_res_id_t

/ * *
* @br ie f L i s t ne twork d e v i c e s on a g i v e n Node
*
* @warning R e t u r n e d v a l u e s a r e s t a t i c a r r a y s n o t t o be f r e e d
*
* @param [ i n ] i d t a r g e t P r o c e s s / Node ID
* @param [ o u t ] c o u n t number o f o u t p u t e l e m e n t s
* @param [ o u t ] r e s _ i d s a r r a y o f s t o r a g e r e s o u r c e s ID
* @param [ o u t ] bandwid th a r r a y o f ne twork d e v i c e bandwid th
* @param [ o u t ] k ind a r r a y o f ne twork d e v i c e k i n d s
* @param [ o u t ] a d d r e s s a r r a y o f u n d e r l y i n g ne twork a d d r e s s
* @param [ o u t ] ne tmask a r r a y o f u n d e r l y i n g ne twork masks
* @return i n t non n u l l on e r r o r
* /

i n t ADM_resNetlist (ADM_profile_id_t id ,
size_t * count ,
c o n s t ADM_profile_network_res_id_t **res_ids ,
c o n s t uint64_t ** bandwidth ,
c o n s t c h a r ** kind ,
c o n s t c h a r ** address ,
c o n s t c h a r ** netmask ) ;

/ * *
* @br ie f R e t u r n c u r r e n t s t a t e o f a g i v e n ne twork d e v i c e
*
* @param [ i n ] i d t a r g e t P r o c e s s / Node ID
* @param [ i n ] r e s _ i d r e s s o u r c e i d e n t i f i e r t o que ry
* @param [ o u t ] t o t a l _ r e c e i v e d number o f b y t e s r e c e i v e d
* @param [ o u t ] t o t a l _ s e n t number o f b y t e s s e n t
* @param [ o u t ] e s t i m a t e d _ b a n d w i d t h e s t i m a t e d c u r r e n t bandwid th
* @param [ o u t ] t imes t amp measurement t imes t amp
* @return i n t non n u l l on e r r o r
* /

i n t ADM_resNetStat (ADM_profile_id_t id ,
ADM_profile_network_res_id_t res_id ,
uint64_t *total_received ,
uint64_t *total_sent ,
uint64_t *estimated_bandwidth ,
uint64_t *timestamp ) ;
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Name: ADM_retNetList
input : ADM_profile_id_t id
InOut : size_t∗ count
InOut : ADM_profile_network_res_id_t ∗ ∗ res_ids
InOut : uint64_t ∗ ∗ bandwidth
InOut : string∗ kind
InOut : string∗ address
InOut : string∗ netmask
output: int error_code
Description:
List networking devices available on a given node. The networking devices can be of several kinds
among HCA (InfiniBand), BXI, OFA, ETH. In case of success the function returns 0, otherwise an
error code is returned.

Name: ADM_resNetStat
input : ADM_profile_id_t id
input : ADM_profile_network_res_id_t res_ids
InOut : uint64_t∗ Total data received
InOut : uint64_t∗ Total data sent
InOut : uint64_t∗ Estimated Current Bandwidth
InOut : uint64_t∗ timestamp
output: int error_code
Description:
Returns current usage on the given network device. This status function is, as all status functions of the
API, a resource description function not to be used for performance measurement. For instance the
estimated bandwidth is based on initial tests at the booting of the node and are not reflecting
potential congestion occurring the network at a given time.

4.5 Process Discovery

/ * *
* @br ie f R e t r i e v e t h e l i s t o f t r a c k e d PIDs r u n n i n g on a g i v e n node
*
* @param [ i n ] node_ id T a r g e t node ( PID component i s i g n o r e d )
* @param [ o u t ] p i d s PIDs r u n n i n g on t h e t a r g e t node
* @return i n t non n u l l on e r r o r
* /

i n t ADM_pmList (ADM_profile_id_t node_id , ADM_profile_id_t * pids ) ;

/ * *
* @br ie f R e t r i e v e t h e l i s t o f t r a c k e d nodes
*
* @param [ o u t ] nodes L i s t o f nodes ( PID b e i n g 0)
* @return i n t non n u l l on e r r o r
* /

i n t ADM_pmNodeList (ADM_profile_id_t * nodes ) ;

/ * *
* @br ie f Check i f a node or PID i s s t i l l r u n n i n g
*
* @param [ i n ] t a r g e t which PID or node t o t a r g e t
* @param [ o u t ] a l i v e t r u e i f t h e node / PID i s s t i l l r u n n i n g
* @return i n t non n u l l on e r r o r
* /

i n t ADM_pmAlive (ADM_profile_id_t * target , bool *alive ) ;

/ * *
* @br ie f R e t r i e v e g e n e r a l i n f o r m a t i o n from a g i v e n p r o c e s s
*
* @param [ i n ] p i d t a r g e t PID ( no w i l d c a r d s )
* @param [ o u t ] a r g c s i z e o f t h e argument a r r a y
* @param [ o u t ] a rgv p a s s e d command l i n e a rgumen t s
* @param [ o u t ] c p u s e t c u r r e n t p r o c e s s CPUset

33



ADMIRE CHAPTER 4. SENSING AND PROFILING SYSTEM API

* @param [ o u t ] a t t r i b u t e s l i s t o f d e t e c t e d a t t r i b u t e s f o r t h i s p r o c e s s (GPU, MPI , OpenMP , . . . )
* @param [ o u t ] mpi_rank MPI rank a t t a c h e d wi th t h i s p r o c e s s
* @param [ o u t ] j o b _ i d JOB I d e n t i f i e r f o r t h i s p r o c e s s
* @return i n t non n u l l on e r r o r
* /

i n t ADM_pmInfo (ADM_profile_id_t pid ,
c o n s t i n t * argc ,
c o n s t c h a r *** argv ,
c o n s t cpuset_t *cpuset ,
c o n s t c h a r ** attributes ,
c o n s t uint32_t mpi_rank ,
uint64_t job_id ) ;

/ * *
* @br ie f E s t i m a t e memory r e s o u r c e s a s s o c i a t e d wi th a g i v e n t a r g e t
*
* @param [ i n ] t a r g e t t a r g e t e d nodes o r PIDs ( w i l d c a r d a c c e p t e d )
* @param [ o u t ] v i r t u a l _ m e m o r y t o t a l v i r t u a l memory i n use
* @param [ o u t ] es t imated_phys_mem t o t a l e s t i m a t e d p h y s i c a l memory i n use
* @param [ o u t ] percen tage_of_mem p e r c e n t a g e o f memory used
* @param [ o u t ] e s t i m a t e d _ s p a c e _ l e f t e s t i m a t e d s p a c e l e f t
* @return i n t non n u l l on e r r o r
* /

i n t ADM_pmStat (ADM_profile_id_t target ,
uint64_t * virtual_memory ,
uint64_t * estimated_phys_mem ,
do ub l e * percentage_of_mem ,
uint64_t * estimated_space_left ) ;

Name: ADM_pmList
input : ADM_profile_id_t node_id
InOut : ADM_profile_id_t∗ PIDs
output: int error_code
Description:
List all processes either being tracked globally or from a given node_id. The parameter PIDs is filled

up with the corresponding list of processes. This function returns 0 on success or an error code.

Name: ADM_pmNodeList
InOut : ADM_profile_id_t∗ nodes
output: int error_code
Description:
The node parameter is returned as a list of the nodes monitored in the system. The function returns 0

in case of success or an error code.

Name: ADM_pmAlive
InOut : ADM_profile_id_t∗ target
InOut : boolean∗ alive
output: int error_code
Description:
Set alive to true if the target is alive. Where target could either a node or a PID. The function returns

0 in case of success or an error code.
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Name: ADM_pmInfo
input : ADM_profile_id_t pid
InOut : int∗ argc
InOut : char ∗ ∗ argv
InOut : cpuset_t∗ cpuset
InOut : char ∗ ∗ attributes
InOut : uint32_t∗ mpi_rank
InOut : uint64_t∗ job_id
output: int error_code
Description:
This functions returns a description of a given process passed as argument. All the information are
sent back using parameters passed pointer. These information includes the attributes of the process, if
the process belongs to a MPI or to a job. Additionally the type of hardware the process is running on,
such as CPU or GPU. A success value is 0 otherwise an error code is returned.

Name: ADM_pmStat
input : ADM_profile_id_t target
InOut : uint64_t∗ Virtual_mem_in_use
InOut : uint64_t∗ Estimation_physical_mem
InOut : double∗ memory_pressure
InOut : uint64_t∗ Estimated_mem_space_left
output: int error_code
Description:
This function provides statistics for a given target, where target could be node or a PID. The statistics
are returned via the pointers passed in argument. The memory state is described with a differentiation
between physical and virtual memory. The memory pressure corresponds to fraction (expressed a a
percentage) of total (virtual and physical) memory consumed. This function may be adjusted slightly
in future iterations of the API as HBM is not specifically addressed while it could be an important
performance factor. The function returns 0 in case of success and an error code otherwise.

4.6 Performance Monitoring

/ * *
* @br ie f Opaque d e f i n i t i o n o f a s a m p l in g p r o f i l e
*
* /

s t r u c t ADM_profile_s ;

/ * *
* @br ie f Typedef o f a s a m p l in g p r o f i l e
*
* /

t y p e d e f s t r u c t ADM_profile_s ADM_profile_t ;

/ * *
* @br ie f Unique i d e n t i f i e r f o r a g i v e n a p p l i c a t i o n
*
* /

t y p e d e f uint64_t ADM_app_id_t ;

/ * *
* @br ie f Per fo rm dynamic p r o f i l i n g on one or m u l t i p l e p r o c e s s e s
*
* @param [ i n ] t a r g e t s l i s t o f p r o c e s s e s o r nodes t o t r a c k
* @param [ i n ] d u r a t i o n t ime d u r i n g which t h e p r o f i l e s h o u l d t a k e p l a c e
* @param [ i n ] d o _ b a c k t r a c e s h o u l d t h e p r o f i l e i n c l u d e b a c k t r a c e s
* @param [ i n ] r e g i o n _ s t r i n g ( o p t i o n n a l ) s h o u l d p r o f i l i n g t a r g e t a s i n g l e r e g i o n
* @param [ o u t ] p r o f i l e h a n d l e t o a newly a l l o c a t e d p r o f i l e r e s u l t
* @param [ o u t ] b e g i n p r o f i l e s t a r t d a t e
* @param [ o u t ] end p r o f i l e end d a t e
* @return i n t non n u l l on e r r o r
* /

i n t ADM_perfSample (ADM_profile_id_t targets ,
do ub l e duration ,
bool do_backtrace ,
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c o n s t c h a r * region_string ,
ADM_profile_t *profile ,
uint64_t *begin ,
uint64_t *end ) ;

/ * *
* @br ie f Per fo rm dynamic p r o f i l i n g on one or m u l t i p l e p r o c e s s e s f o c u s s i n g on IOs (EBS)
*
* @param [ i n ] t a r g e t s l i s t o f p r o c e s s e s o r nodes t o t r a c k
* @param [ i n ] d u r a t i o n t ime d u r i n g which t h e p r o f i l e s h o u l d t a k e p l a c e
* @param [ i n ] d o _ b a c k t r a c e s h o u l d t h e p r o f i l e i n c l u d e b a c k t r a c e s
* @param [ i n ] r e g i o n _ s t r i n g ( o p t i o n n a l ) s h o u l d p r o f i l i n g t a r g e t a s i n g l e r e g i o n
* @param [ o u t ] p r o f i l e h a n d l e t o a newly a l l o c a t e d p r o f i l e r e s u l t
* @param [ o u t ] b e g i n p r o f i l e s t a r t d a t e
* @param [ o u t ] end p r o f i l e end d a t e
* @return i n t non n u l l on e r r o r
* /

i n t ADM_perfIO (ADM_profile_id_t targets ,
do ub l e duration ,
bool do_backtrace ,
c o n s t c h a r * region_string ,
ADM_profile_t *profile ,
uint64_t *begin ,
uint64_t *end ) ;

/ * *
* @br ie f Attemp t o c l a s s i f y one o r m u l t i p l e p r o c e s s e s i n t e r m s of o v e r a l l b e h a v i o r
*
* @param [ i n ] t a r g e t s one o r m u l t i p l e p r o c e s s e s t o c l a s s i f y
* @param [ o u t ] s i z e s i z e o f t h e r e s u l t i n g v e c t o r s p a c e
* @param [ o u t ] c o o r d i n a t e s newly a l l o c a t e d a r r a y d e s c r i p i n g p r o c e s s e s b e h a v i o r
* @param [ o u t ] d e s c r i p t i o n s s t a t i c l i s t o f l a b e l s f o r each c o o r d i n a t e s
* @return i n t non n u l l on e r r o r
* /

i n t ADM_perfClass (ADM_profile_id_t targets ,
uint64_t *size ,
uint64_t ** coordinates ,
c o n s t c h a r ** descriptions ) ;

/ * *
* @br ie f Attemp t o c l a s s i f y one o r m u l t i p l e p r o c e s s e s i n t e r m s of IO b e h a v i o r
*
* @param [ i n ] t a r g e t s one o r m u l t i p l e p r o c e s s e s t o c l a s s i f y
* @param [ o u t ] s i z e s i z e o f t h e r e s u l t i n g v e c t o r s p a c e
* @param [ o u t ] c o o r d i n a t e s newly a l l o c a t e d a r r a y d e s c r i p i n g p r o c e s s e s b e h a v i o r
* @param [ o u t ] d e s c r i p t i o n s s t a t i c l i s t o f l a b e l s f o r each c o o r d i n a t e s
* @return i n t non n u l l on e r r o r
* /

i n t ADM_perfIOClass (ADM_profile_id_t targets ,
uint64_t *size ,
uint64_t ** coordinates ,
c o n s t c h a r ** descriptions ) ;

/ * *
* @br ie f Opaque s t r u c t u r e f o r a p e r f o r m a n c e model
*
* /

s t r u c t ADM_perf_model_s ;

/ * *
* @br ie f Type d e f i n i t i o n f o r a p e r f o r m a n c e model
*
* /

t y p e d e f ADM_perf_model_s ADM_perf_model_t ;

/ * *
* @br ie f R e t r i e v e t h e p e r f o r m a n c e model o f a g i v e n a p p l i c a t i o n
*
* @param [ i n ] app t a r g e t a p p l i c a t i o n ID
* @param [ o u t ] model r e t u r n e d model from Ext ra −P
* @return i n t non n u l l on e r r o r
* /

i n t ADM_perfModel (ADM_app_id_t app ,
ADM_perf_model_t * model ) ;
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Name: ADM_perfSample
input : ADM_profile_id_t targets
input : int duration
input : boolean do_backtrace
input : String region_name
InOut : ADM_profile_t∗ profile
InOut : uint64_t begin
InOut : uint64_t end
output: int error_code
Description:
This function is the main knob to increase both the scope and the accuracy of the performance
measurements. The length of the sampling profile is set to duration seconds. The amount of
information and more generally the accuracy / frequency of the sampling can be configured,
do_backtrace allows to retrieve a weighted call graph in the profiling information. The parameters
targets specifies either a node or a PID, or a set of nodes or a set of PIDs. The profiling window can
be specified not only using the time information (begin and end) but also using a specific code region
tag defining a region name. A region name would be provided, the function will set up the begin and
end parameters to the value corresponding to the length of this code region. Both parameters begin
and end corresponds to time stamps. The profile information generated are generic profile, i.e.
including CPU information and other none-I/O values. The function returns 0 upon success or an
error code.

Name: ADM_perfIO
input : ADM_profile_id_t targets
input : int duration
input : boolean do_backtrace
input : String region_name
InOut : ADM_profile_t∗ profile
InOut : uint64_t begin
InOut : uint64_t end
output: int error_code
Description:
This function is the I/O focused derivation of the function ADM_perf_sample. Only I/O information
are attached to the profile. The functions returns 0 in case of success and an error code otherwise.

Name: ADM_perfClass
input : ADM_profile_id_t targets
InOut : uint64_t size
InOut : uint64_t ∗ ∗ coordinate
InOut : String∗ descriptions
output: int error_code
Description:
This functions attempts to produce a classification for a set of processes or nodes. The classification is
returns via filled-in pointers parameters. The classification is instantiated as vector description, of
size elements, where the values are set in coordinate and descriptions holds the textual label of
each field of the classification. The function returns 0 upon success or an error code.
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Name: ADM_perfIOClass
input : ADM_profile_id_t targets
InOut : uint64_t size
InOut : uint64_t ∗ ∗ coordinate
InOut : String∗ descriptions
output: int error_code
Description:
Similar function than ADM_perfClass but limited to the I/O behavior.

Name: ADM_perfModel
input : ADM_app_id_t app
InOut : ADM_perf_model_t∗ model
output: int error_code
Description:
This function returns, via a passed-through data structure, the result of Extra-P modeling for a given

application app. The full specification of model returned is not yet fully defined, thus the API relies
on a opaque data structure. In case of success 0 is returned, otherwise an error code is returned.

4.7 IC control plane

New call for IC control does ON/OFF plus REGISTER/UNREGISTER

/ * *
* @br ie f A c t i o n s a s s o c i a t e d wi th @ref ADM_monitoringEnabled
*
* /

t y p e d e f enum
{

ADM_MONITORING_REGISTER , / * *< R e g i s t e r a new p r o c e s s ( a r g i s a p p l i c a t i o n ID ) * /
ADM_MONITORING_DELETE , / * *< D e l e t e a g i v e n p r o c e s s ( a r g i s i g n o r e d ) * /
ADM_MONITORING_SUSPEND , / * *< Suspend a l l m o n i t o r i n g f o r a r g s e c o n d s * /
ADM_MONITORING_LIGHT , / * *< S e t l i g h t m o n i t o r i n g f o r a r g s e c o n d s * /
ADM_MONITORING_MEDIUM , / * *< S e t medium m o n i t o r i n g f o r a r g s e c o n d s * /
ADM_MONITORING_VERBOSE / * *< S e t v e r b o s e m o n i t o r i n g f o r a r g s e c o n d s * /

}ADM_monitoring_action_e ;

/ * *
* @br ie f Do a c t i o n s f o r a g i v e n PID
*
* @param [ i n ] p i d t a r g e t PID
* @param [ i n ] a c t i o n what i s t o be done f o r t a r g e t p i d ( s e e @ref ADM_moni tor ing_act ion_e )
* @param [ i n ] a r g o p t i o n n a l a rgument ( s e e @ref ADM_moni tor ing_ac t ion_e )
* @return i n t non n u l l on e r r o r
* /

i n t ADM_monitoringEnabled (ADM_profile_id_t pid ,
ADM_monitoring_action_e action ,
uint64_t arg ) ;

Name: ADM_Monitoring_enable
input : ADM_profile_d_t PID
input : ADM_monitoring_action_e action
input : (uint64_t) arg
output: int success (0) or error code
Description:
Set the level of monitoring, either switch it off completely or any value between light (low

intrusiveness) to full blow monitoring (heavy weight)

See Deliverable D6.1 for more information on Intelligent Controller.
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Figure 4.2: UML diagram associated with WP5 API.

4.8 UML Diagram

As presented in the UML diagram of Figure 4.2 and illustrated in Figure 4.1, from an interfacing point of view,
we expose public calls solely in the Monitoring Manager. On each node, a Monitoring Daemon, connected
to the Monitoring Manager in a scalable manner (tree-based) proceeds to measurements using previously de-
scribed components while issuing commands as requested per the tree-root.

4.9 Data Velocity

In this section, we will discuss our choices with respect to the data footprint associated with the measurements
previously covered in this report. Indeed, we do not solely want to imagine a system, but also want to make our
approach practical and efficient, particularly considering production and constraints associated with such long-
running services. For this purpose, we will first summarize our data-management plan, explaining which are the
verbosities at play, and where they play a role. Second, and in the light of this introductory discussion, we will
estimate the individual data-footprints to draw an overall measurement budget. Eventually, this measurement
storage requirement will be contrasted with HPC-class storage capabilities.

4.9.1 Design Choices and Data-Management

What is both challenging and highly interesting in the ADMIRE project, is the transverse nature of the mea-
surements we have to carry on. Indeed, performance tools generally excel at collecting a precise kind of metric
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with a reduced span, either temporally or spatially. Here, we want everything at once: a global view (e.g. time
series) and the ability to zoom-in, being able to blame measurements up to the correct line number. In all these
cases, there must be a constant space-time trade-off. More precisely, the more spatial resolution you get, the
less temporal resolution you have and conversely. To better illustrate this consideration, let’s quickly recall the
measurements avenues we have described in Chapter 3.

We began with the Prometheus infrastructure combined with the new exporters associated with respective
ad-hoc I/O layers that we are going to unfold in the project. This is the always-on measurement system, fully
distributed on all the nodes it generates measurements with a relatively low frequency (≈ 5 seconds) on a wide
range of local counters. This spatial definition (each node is tracked) is then necessarily constraining our ability
to increase the sampling rate as data volumes would otherwise become unmanageable. We plan to (1) carefully
select metrics to be tracked in each collector and (2) study the sampling rate to ensure the practicability of our
back-end Monitoring System – what is important is that these levers will be available to dimension the system.

Our second measurement layer is the opposite, here we give up on spatial resolution to privilege the tem-
poral one. To achieve this, we rely on a Tree-Based Overlay Network as presented in Section 3.3. Thanks
to a reduction tree interconnecting the monitoring daemons, we plan to provide sub-second measurements for
the whole system. As sketched in the dedicated section, considering one hundred counters which seem to be
a reasonable system-state snapshot, this generates only a limited amount of data. In fact, and as shown in the
dedicated section, reducing 100 counters every 23.44 milliseconds would only yield 33.33 KB per second of
performance data. Again, in this measurement layer, we can easily change the sampling rate or limit the number
of counters to head for a precise data-capping budget as shown in Figure 3.7.

The last measurement layer is associated with the application itself and applies to a larger spectrum. Indeed,
as presented in Section3.2.2, our "standard" measurement scheme will rely on sampling to collect both the
program counter and associated call-stacks to generate a collated performance profile of the running application.
We do not anticipate this profile to be larger than a few megabytes in the most adverse case. However, as
discussed in Section 3.4, we have not excluded punctual extensive measurements either with TAU (profiles,
traces) or Extra-P (performance models). Given the discrete nature of such instrumentation, we do not rule
out, if required, the collection of full temporal performance traces up to several Gigabytes. Considering Event-
Based Sampling (EBS) as done in most state-of-the-art performance tools, the output should not be larger than
a few megabytes. This approach enables direct instrumentation on the target interfaces – unlike with dynamic
instrumentation. As far as our mitigation approach is concerned, it is relatively straightforward. Indeed, as
we decide how and what to track we can naturally limit the resulting data footprint. For example, it might be
unwise to instrument a two-week run as an application running only a few minutes. Consequently, this more
verbose instrumentation will be driven by measurements at coarser grains (previous layers). Moreover, these
unsupervised and asynchronous measurements allow us to (1) cancel a profile generating too much data and (2)
put up with increased measurement overheads which would be intolerable in production.

As shown in Figure 4.3, the various instrumentation methodologies we have unfolded in this document are
covering a wide spectrum. Indeed, thanks to the multi-scale approach we have outlined we can change data-
verbosity according to both our needs and current machine capacity. We plan to rely on this re-configurable
instrumentation scheme to collaborate with WP6’s Intelligent Controller to constantly adapt our monitoring
(and transitively its cost) to what is needed to enable ADMIRES’ improved I/Os.

4.9.2 Estimated Data-Budget

A legitimate concern is the intrusiveness of the observation and the overhead induces to production operations.
Here we provide an estimate of the data volume to transit on the data plane. We consider that the amount of
data transiting through the control plane will remain limited. Control messages are short commands, where
latency is the key issue, for such messages the most important hurdle is scalability.

It is why, as discussed in the previous section, we ensured each layer of ADMIRE’s instrumentation chain
is re-configurable to allow us to dynamically manage instrumentation overhead which is tightly bound to data
velocity. As show in Table 4.1, each layer of instrumentation exposes possibilities of mitigating its verbosity,
including dynamically in some cases. Thanks to this approach, we will be able to experimentally dimension our
measurement system to find the right trade-off between descriptively and overhead. As far as the control layer
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Figure 4.3: Illustration of space-time trade-offs in the ADMIRE instrumentation chain.

Instrumentation Layer Mitigation Techniques

TBON Dynamic sampling rate, number of collected entries

Prometheus Sampling rate, retention duration, number of collected entries

Dynamic Instrumentation Selective instrumentation (on-demand, per phase), optional back-traces

Discrete Instrumentation On demand, fully-configurable, asynchronous and unsupervised, can be canceled

Table 4.1: Recall of anticipated data velocity mitigation strategies in ADMIRE’s instrumentation chain.

is concerned, we will rely on a tree-based approach to avoid centralizing data-exchanges, yet we anticipate the
control bandwidth to be negligible.

If we had to do a rough estimation of what we are intending to measure constantly, we could assume it
relies on the following parameters (1) associated sampling rate, (2) the number of retrieved data-points per
node and (3) the number of nodes. Therefore, considering a typical sampling rate is in the range of 5 seconds,
and thousands of nodes which is a good assumption for most HPC centers. Besides, regarding the number of
data points to retrieve, we estimate that 1 KB (> 1 hundred of 64-bit numbers) provides an accurate description
of the performance landscape. Therefore, we can deduce the following data velocity estimate:

Nb Nodes× 1KB

sampling rate
=

10000× 1KB

5
= 2MB/sec

Considering the bisection bandwidth of a 10.000 nodes HPC system, an overhead of 2 MB/s is insignifi-
cant. Eventually, a performance database operating for three years at full speed will culminate below 200 TB.
The mitigation schemes in ADMIRE will be combined with bookkeeping techniques (archiving, compression,
filtering), drastically reducing the amount of hot data, yet 200 TB on cold storage is affordable in respect of
current storage capacities deployed in HPC systems. As far as the instrumentation layer state is concerned, the
modeling capabilities of Extra-P will not generate an additional need for data. Besides, accurate models will
be generated out of these 2 MB/sec of data. Dealing with the forwarding of the IO hints yielded by WP7, we
will read them directly from the Intelligent Controller’s application manager inside the target application. Their
storage will be associated with corresponding measurements (profiles, phase outlining, on-demand profiling),
and their data velocity should then share the same upper bound.
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Overall, as covered in this section, we have seen that ADMIRE transverse nature enables measurements
usually out of reach solely from the application side – the most common instrumentation technique. Indeed, this
exclusive ability of zooming into the performance data is one of the difficulties when tracking HPC applications.
In our case, we will do it automatically without even the users noticing it, the reason why, for example, we
avoided having a direct control flow with WP7. We anticipate that the upcoming discussions with other WPs,
particularly WP6, will focus on deciding what is needed and when. The main goal is to enable both malleable
I/O services and dynamic instrumentation in a constant feedback loop.

42



CHAPTER 5. CONCLUSION ADMIRE

Chapter 5

Conclusion

A first contribution of this Deliverable is the description of the general architecture of ADMIRE’s Monitoring
System. The design principles of this system are based on separation of concern, with a clear distinction
between the control and data planes. Furthermore, an effort is made to re-use existing open software solution
if and only if they offer added value in respect of home grown solution. Since the inception of the project,
an effort has been made to review candidate technology and assess the most suitable open-source projects for
ADMIRE could rely on. As a project side-result of ADMIRE, we expect to push upstream patches to these
selected open-source projects.

Overall the Monitoring System of ADMIRE will be composed of:

• Monitor Manager, this component will be developed in the framework of ADMIRE. the Monitoring
manager is in charge of controlling all the Monitoring Daemons spread over the system. The Monitoring
Manager is the interface with the Intelligent Controller. The Monitor Manager can also browse the
Performance Data Lake to extract information.

• Monitoring Daemon, this component will be developed in the framework of ADMIRE. A Monitoring
Daemon is active on each compute node of the system. The monitoring daemon is in charge of collection
performance information, and upon request from the Monitoring Manager, to trigger more intrusive
profiling. This additional profiling will be based on TAU and PStack based prototype tool.

• Telemetry solution based on the open-source project Prometheus. We will develop a node exporter com-
patible with Prometheus and reverse it to the Prometheus project.

• Live monitoring interface, base on the open-source project Grafana. The resulting Dashboard will help
ADMIRE end-user to understand the I/O behavior and observe the resulting performance.

• Analysis, will be based on the modeling tool Extra-P, which is one of the ADMIRE assets, as well as on
external open-source components if required (e.g Elk), besides pre-define database analysis written for
this project.

Additionally to the components listed above, the Monitoring System includes a performance Data Lake.
The Data Lake is in charge of storing the performance data. The Data Lake is expected to be mostly hosted by
a Prometheus database.

As our effort has not been limited to the design of an architecture, the deliverable includes as well additional
details on the performance probes mechanism. We have presented technical discussion on the implementation
of the probing mechanism, where the goal is to support an open system. Initial implementation will support
Lustre and GPFS parallel file systems, CPU and GPU, Infiniband network interface. But should a new accel-
erator technology arise within the lifespan of the project the Monitoring Mechanism design is flexible enough
to accommodate it at minimal cost. The specific challenges of dynamic instruction are not overlooked, and we
even foresee some interesting capabilities with the development of eBPF. About implementation we have also
detailed the possible realization of a Tree-based overlay network to performance data reduction.

This deliverable defines the first iteration of the API between the Monitoring Manager and the Intelligent
Controller. The sole interface of the Monitoring System with the other ADMIRE software is this API. An

43



ADMIRE CHAPTER 5. CONCLUSION

important contribution of this first deliverable is the specification of the main call to be supported by the Mon-
itoring Manager to interact with the Intelligent Controller. We plan to implement the API is two different
versions, first as a REST API and secondly as a low-latency RPC API. The REST API will allow us to de-
coupled the development of the Monitoring System from the constraints of the other WP in ADMIRE. It offers
ease of integration in test and validation frameworks. The low latency RPC API will offer tighter integration
with the Intelligent Controller and the level of performance align with the expectations in the market of HPC.
ADMIRE will support state-of-the art notification mechanisms based on its modeling component as well as
from its Analytic Module.

The next deliverable in WP5 is due by M14, at this date the 3 main implementations tasks will be active,
the initial design task T5.1 which has been the main contributor of this document will be completed. We do
expect by the time of D5.2 to have a prototype implementation of the Monitoring System with full connectivity
among the Monitoring System components.
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Appendix A

Terminology

• Ad hoc Storage System, ephemeral storage system that only exists in a determined period, i.e. during a
job’s execution.

• CLI, command line interface.

• DRAM, dynamic random-access memory.

• EBNF, Extended Backus–Naur Form is a family of metasyntax notations, any of which can be used
to express a context-free grammar. EBNF is used to make a formal description of a formal language
such as a computer programming language. They are extensions of the basic Backus–Naur form (BNF)
metasyntax notation.

• In situ data, processing the data where it is originated.

• In transit data, processing the data when it is moved.

• NORNS, data transfer service for HPC developed at BSC.

• NVM, non-volatile memory.

• PFS, parallel file system.

• POSIX, Portable Operating System Interface, family of standardized functions.

• QoS, Quality of Service.

• RDMA, remote direct memory access.

• RPC, remote procedure call.

• Slurm, job submission system widely used.

• SSD, solid state drive.

• Object store, persistent storage system where data are stored not as file but as objects. In its canonical im-
plementation Object are immutable and the API is limited to PUT, GET and DELETE. More sophistical
object store have been developed on the ground of these concepts such as ADMIRE Data Clay.

• Disaggregated Storage, storage systems where all the storage capabilities are centralized in dedicated
network attached storage servers. This approach allows connected compute nodes to access a storage
capacity without constraints related to the capacity of a single storage device.

• PFS, Parallel File System, type of distributed file system supporting a global namespace and spread
across multiple storage servers.
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• Node Local Storage, ability for a compute server to store persistent data on physically local storage
devices.

• Ephemeral Storage, file systems which are making persistent (surviving across system reboot) but which
are designed to be deployed and destroyed over a limited period of time, from few hours up to few
months.

• API, Application Programming Interface, a mechanism that enables an application or service to access a
resource within another application or service. The application or service doing the accessing is called
the client, and the application or service containing the resource is called the server.

• Rest API, such APIs can be developed without constraint and the programming language and support
a variety of data formats. The only requirement is that they align to the following six REST design
principles - Uniform interface, Client-server decoupling, Statelessness, Cacheability, Code on demand
(optional).

• OSS, an Object Store Server in the Lustre terminology is a computing server in charge of managing the
ingest of data, including generation of the data protection, and ship these data to the correct Object Store
Target.

• OST, Object Store Target in the Lustre terminology is a storage server accommodating potentially a large
number of hard drives and/or NMVes. The OST write the data received from the OSS and make them
persistent.

• MDS, MetaData Server.

• MDT, MetaData Target.

• Stripe, an elementary chunk of data according to the Lustre terminology. A large file is split in multiple
stripes and each stripe is sent to an individual OST. The higher is the number of stride, the higher is the
parallelism.

• Monitoring Manager,

• Intelligent Controller,

• Monitoring Daemon,

• TBON, Tree Based Overlay Network,

• PromQL, the query language supported by the Prometheus database. Syntax, documentation and exam-
ples are available here: https://prometheus.io/docs/prometheus/latest/querying.
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