
H2020-JTI-EuroHPC-2019-1

Project no. 956748

ADAPTIVE MULTI-TIER INTELLIGENT DATA MANAGER FOR
EXASCALE

D2.2
Design of the ad hoc storage systems

Version 1.0

Date: April 29, 2022

Type: Deliverable
WP number: WP2

Editor: Marc-André Vef
Institution: JGU

Project co-funded by the European Union Horizon 2020 JTI-EuroHPC research and innovation
programme and Spain, Germany, France, Italy, Poland, and Sweden

Dissemination Level
PU Public

√

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

ADMIRE

Change Log

Rev. Date Who Site What

1 21/03/22 Jesus Carretero UC3M Document creation.

2 28/03/22 Marc-André Vef JGU Created structure.

3 12/04/22 Ramon Nou BSC Added GekkoFS changelog.

4 19/04/22 Marc-André Vef JGU Updated GekkoFS summary section.

5 19/04/22 Marc-André Vef JGU Added GekkoFS download and installation sec-
tion.

6 19/04/22 Marc-André Vef JGU Added GekkoFS running section.

7 19/04/22 Marc-André Vef JGU Updated GekkoFS updates section.

8 20/04/22 Marc-André Vef JGU Added GekkoFS use cases section.

9 20/04/22 Marc-André Vef JGU Added GekkoFS application compatibility sec-
tion.

10 20/04/22 Marc-André Vef JGU Added executive summary section.

11 20/04/22 Marc-André Vef JGU Updated appendix section.

12 20/04/22 Marc-André Vef JGU Added introduction section.

13 20/04/22 Marc-André Vef JGU Added conclusion section.

14 21/04/22 Diego Camarmas,
Félix García-
Carballeira, Ale-
jandro Calderón

UC3M Updated Expand section.

15 24/04/22 Nafiseh Moti JGU Added application section.

16 25/04/22 Javier García-
Blas

UC3M Added Hercules IMSS section.

17 25/04/22 Marc-André Vef JGU Updated application section.

18 25/04/22 Marc-André Vef JGU Updated ad hoc storage system section.

19 25/04/22 Marc-André Vef JGU Revised document; First draft finished.

20 27/04/22 Hamid Fard TUD Reviewed deliverable.

21 28/04/22 Marc-André Vef JGU Reviewed the review and finalized the document.

1

Executive Summary

Ad hoc storage systems represent a dynamic component within the ADMIRE project to accelerate I/O perfor-
mance of scientific applications and significantly reduce I/O traffic to the general-purpose storage backends,
i.e., shared parallel file systems, of High-Performance Computing (HPC) clusters. Ad hoc storage systems are
usually of an ephemeral nature and live within a particular application context (e.g., an HPC compute job),
usually using node-local storage devices (e.g., SSDs). In order to achieve better performance in HPC systems
within the ADMIRE project, ad hoc storage systems are integrated and controlled by the I/O scheduler (re-
specting the malleable decisions taken by the malleability manager). Moreover, ad hoc storage systems should
be malleable themselves and support longer-running workflows, such as job campaigns.

In Deliverable 2.1, we provided a detailed analysis of the ad hoc storage systems, their interfaces to the
ADMIRE ecosystem, and an initial analysis of the ADMIRE applications. In this deliverable, we will focus on
the deployment and the software updates of each ad hoc storage system since Deliverable 2.1. We will further
present how to acquire, compile, test and run each ad hoc storage system, and we will discuss their limitations
with regards to supporting the ADMIRE applications and how they can be overcome, if applicable. Finally,
we will show further insights into the ADMIRE applications with regards to their I/O footprint, which we will
continuously work on to understand the benefits of the ad hoc storage systems for each application.

2

Contents

1 Introduction 4

2 Ad hoc storage systems 6
2.1 GekkoFS . 6

2.1.1 Design summary . 6
2.1.2 Use cases . 6
2.1.3 Download and installation . 7
2.1.4 Running GekkoFS . 8
2.1.5 Updates . 9
2.1.6 ADMIRE application compatibility . 11

2.2 dataClay . 11
2.2.1 Design summary . 11
2.2.2 Use cases . 12
2.2.3 Download and installation . 12
2.2.4 Running dataClay . 13
2.2.5 Updates . 14
2.2.6 ADMIRE application compatibility . 14

2.3 Expand . 14
2.3.1 Design summary . 15
2.3.2 Use cases . 17
2.3.3 Download and installation . 17
2.3.4 Running Expand . 19
2.3.5 Updates . 20
2.3.6 ADMIRE application compatibility . 20

2.4 Hercules IMSS (in-memory storage system) . 20
2.4.1 Design summary . 21
2.4.2 Use cases . 22
2.4.3 Download and installation . 22
2.4.4 Usage . 23
2.4.5 Updates . 25
2.4.6 ADMIRE application compatibility . 26

3 Applications analysis 27
3.1 Molecule simulation . 27

3.1.1 I/O behaviour . 27
3.2 Turbulence simulation . 28

4 Conclusion 30

Appendix A Terminology 31

3

1 Introduction

WP4

I/O Scheduler

WP3

Malleability Manager

WP6

Intelligent

Controller

WP2

Ad-hoc Storage

SLURM

I/O state

Back-end storage

QoS Control

Control commands

System state

WP5

Sensing and Profiling

System, storage, application states

Monitoring commands

Monitoring

Distributed

Database

IC

WP7

ApplicationsA
D

M
IR

E

a
p
p

lic
a

ti
o
n

m
a

n
a

g
e

r

QoS Control

I/O malleability decision

Ad-hoc Storage system monitoring

Monitoring: LIME + Paratools TAU

Monitoring:

applications

ADMIRE-enabled

applications + user

hints

WP5

Monitoring

manager

Performance

Database

Startup

HSM data flow

Figure 1.1: ADMIRE architecture overview. Each component developed in the project’s scope has included the
label of its related work package (WP).

Work package 2 considers several ad hoc storage systems to efficiently use node-local storage technologies,
e.g., SSDs or future non-volatile memories (NVMs), to reduce the pressure on the main backend storage systems
that are used in HPC systems, e.g., Lustre or GPFS. In general, WP2 focuses on three main tasks:

1. The used applications in ADMIRE are analysed to understand how ad hoc storage system should be
modified so that applications can benefit from a malleable and dynamic storage system that can react to
specific I/O requirements during runtime (see D2.1 for details).

2. The ad hoc storage systems are further developed and integrated into the ADMIRE ecosystem adding
support for fast storage technologies and new data placement algorithms.

3. Resilience mechanisms are added to the ad hoc storage systems so that they can run for longer periods,
such as in application workflows which consist of multiple consecutive compute jobs that can use the
same shared namespace without moving data.

Figure 1.1 presents an overview of the ADMIRE ecosystem with the ad hoc storage system being connected

1. to the I/O scheduler (WP4) which controls and manages the ad hoc storage system instances;

2. to the sensing and profiling module (WP5) which receives the current ad hoc storage system state and
performance counters;

4

CHAPTER 1. INTRODUCTION ADMIRE

3. to the intelligent controller (WP6) which receives malleability confirmations after forwarding malleabil-
ity decisions from the malleability manager (WP3) to the ad hoc storage system via the I/O scheduler;
and

4. to the backend storage, e.g., Lustre, in which an ad hoc storage system is used within the backend storage
system’s hierarchical storage management (HSM).

First, Chapter 2 of this prototype deliverable will focus on the usage of the ad hoc storage systems GekkoFS,
dataClay, Expand, and Hercules IMSS with regards to where they can be acquired, how they can be built and
deployed, how they can be tested, and how they can be practically used by any application. Next, we will
discuss each ad hoc storage system’s main use cases, their compatibility with the applications that are used
in ADMIRE, and how theses limitations could be overcome, if applicable. Moreover, Chapter 2 will present
the development and software updates of each ad hoc storage systems since D2.1. Chapter 3 provides new
insights into our on-going application analysis concerning their I/O footprint. Finally, Chapter 4 concludes this
deliverable.

5

2 Ad hoc storage systems

This section will discuss all ad hoc storage systems that are used in the ADMIRE project concerning their
overall design, their software updates since the last deliverable, and their supposed compatibility of the AD-
MIRE applications. Therefore, we will include information on what tasks are required to support the ADMIRE
applications. Note, that we will include a brief summary of each ad hoc storage system, but we kindly refer to
Deliverable 2.1 which introduces each ad hoc storage system in detail.

2.1 GekkoFS

In the following, we will briefly introduce GekkoFS’s key points and its updates over the past months, and
discuss its application compatibility.

2.1.1 Design summary

GekkoFS [7, 9, 10] is a highly scalable distributed file system for HPC clusters which runs entirely in user
space. GekkoFS is capable of aggregating the local I/O capacity and performance of compute nodes to produce
a high-performance storage space for applications. Using GekkoFS, HPC applications can run isolated from
each other regarding I/O, which reduces interferences and improves performance. Further, GekkoFS has been
designed with configurability in mind and allows users to fine-tune several of the default POSIX file system
semantics, e.g., support for symbolic links, strict bookkeeping of file access timestamps and other metadata,
or even modifying entire file system protocols. The overall design of GekkoFS takes previous studies on the
behaviour of HPC applications into account [5] to optimise the most used file system operations.

Contrary to general-purpose parallel file systems, a GekkoFS file system is ephemeral in nature. In other
words, the lifetime of a GekkoFS file system instance is linked to the duration of the execution of its GekkoFS
server processes, which are typically spawned when an HPC job starts and shut down when it ends. This means
that users must copy any files that needs to be persisted beyond the lifetime of the job from GekkoFS to a
permanent file system, such as Lustre or GPFS. Moreover, because GekkoFS is implemented at user-level, the
file system is only visible to applications using one of the GekkoFS client libraries. A consequence of this is
that traditional file system tools (ls, cd, etc.) installed by system administrators will not be aware of files in
a GekkoFS file system. To solve this, GekkoFS provides a client system call interception library that can be
preloaded before calling these tools.

Figure 2.1 provides an overview of GekkoFS’s architecture. Please refer to Deliverable 2.1 for a detailed
introduction in the core design considerations.

2.1.2 Use cases

As described in Deliverable 2.1 in detail, ad hoc storage systems can significantly help in various I/O intensive
workloads, such as bulk-synchronous, checkpoint-restart, or Deep Learning workloads [2]. In general, it de-
pends on a given workload and the overall system how significant the runtime improvement can be when used
with an ad hoc storage system compared with the main backend storage system, i.e., the parallel file system
(PFS). One of the main goals of the ADMIRE project is to maximise the efficiency of a supercomputer environ-
ment, employing malleability techniques for computation and I/O. Therefore, an ad hoc storage system should
be used over the PFS if it is beneficial to the applications runtime.

6

CHAPTER 2. AD HOC STORAGE SYSTEMS ADMIRE

Figure 2.1: The GekkoFS architecture.

For GekkoFS, we target a wide range of distributed workloads that traditionally do not work well on PFSs,
e.g., random I/O, small I/O requests, or the generation of many small files. As a result, the storage system
can be especially beneficial when applications require a fast, global, and distributed namespace. For example,
when many checkpoints need to be created, as it is the case with ADMIRE’s Quantum Espresso and Nek5000
applications, GekkoFS could allow for a much higher frequency of checkpoints that could then moved to the
PFS asynchronously. Moreover, for Deep Learning (DL) workloads, we have already shown in our most recent
publication “Streamlining distributed Deep Learning I/O with ad hoc file systems” [7] at the CLUSTER con-
ference in 2021 how GekkoFS can benefit DL workloads with the Tensorflow [1] and Horovod [8] frameworks.
This is particularly relevant for the Remote Sensing ADMIRE application which is also using Tensorflow and
Horovod for distributed learning.

In the next months, we will further investigate the specific benefits of GekkoFS for each ADMIRE applica-
tion.

2.1.3 Download and installation

GekkoFS is open-source and available at https://storage.bsc.es/gitlab/hpc/gekkofs. Fur-
ther, a documentation wiki can be found at https://storage.bsc.es/projects/gekkofs/
documentation. The wiki is continuously extended with advanced information, such as file system ar-
chitecture, consistency information, installation and running details, code reference based on Doxygen, and
more. In the following, we will present step-by-step instructions for download and installation. More detailed
instructions and the required dependencies are available in the wiki.

1. Ensure the required system dependencies are available and at least GCC 8 is installed.

2. Clone the latest GekkoFS version 0.9.1 release1:

git clone --recurse-submodules --branch v0.9.1
https://storage.bsc.es/gitlab/hpc/gekkofs.git↪→

3. Set up the necessary environment variables where the compiled direct GekkoFS dependencies will be
installed at (we assume the path /home/foo/gekkofs_deps/install in the following):

1The current deliverable presents the release of GekkoFS on the 29th of April of 2022 with its corresponding tag v0.9.1 which can
be directly accessed at https://storage.bsc.es/gitlab/hpc/gekkofs/-/tags/v0.9.1.

7

https://storage.bsc.es/gitlab/hpc/gekkofs
https://storage.bsc.es/projects/gekkofs/documentation
https://storage.bsc.es/projects/gekkofs/documentation
https://storage.bsc.es/gitlab/hpc/gekkofs/-/tags/v0.9.1

ADMIRE CHAPTER 2. AD HOC STORAGE SYSTEMS

• export LD_LIBRARY_PATH=/home/foo/gekkofs_deps/install/lib:
/home/foo/gekkofs_deps/install/lib64↪→

4. Download and compile the direct dependencies:

• Download example: gekkofs/scripts/dl_dep.sh /home/foo/gekkofs_deps/git

• Compilation example: gekkofs/scripts/compile_dep.sh /home/foo/gekkofs_deps/git

/home/foo/gekkofs_deps/install

• Consult -h for additional arguments for each script.

5. Compile GekkoFS and run optional tests:

• Create build directory: mkdir gekkofs/build && cd gekkofs/build

• Configure GekkoFS:
cmake -DCMAKE_BUILD_TYPE=Release

-DCMAKE_PREFIX_PATH=/home/foo/gekkofs_deps/install ..↪→

– Add -DCMAKE_INSTALL_PREFIX=<install_path> where the GekkoFS client library and
server executable should be available.

– Add -DGKFS_BUILD_TESTS=ON if tests should be build.

6. Build and install GekkoFS: make -j install

GekkoFS is now available at:

• GekkoFS daemon (server): <install_path>/bin/gkfs_daemon

• GekkoFS client interception library: <install_path>/lib64/libgkfs_intercept.so

2.1.4 Running GekkoFS

GekkoFS needs two steps to be used. First, we need to start the servers before any client can use the ad hoc
file system (although one improvement in ADMIRE will be the addition or removal of servers once the client
is running, at least one server should be activated).

The next lines include an excerpt of a job description file (SLURM based) to launch the servers and the
clients.

1 module load gekkofs
2

3 # Where do we put the data in the computation node
4 # Can be any directory (you can use /tmp as it is virtual)
5

6 export TMP_PATH=$TMPDIR
7 export GKFS_MNT="${HOME}/gkfs_mnt"
8

9 # Where we put the data files of GekkoFS
10 export GKFS_ROOT="${TMP_PATH}/gkfs_root"
11 # Sets a shared file to know which servers are available.
12 export GKFS_HOSTS_FILE=${HOME}/test/gkfs_hosts.txt
13 export LIBGKFS_HOSTS_FILE=${HOME}/test/gkfs_hosts.txt
14

15 rm $GKFS_HOSTS_FILE
16

17 CMD="${GKFS_DAEMON} --mountdir=${GKFS_MNT:?} --rootdir=${GKFS_ROOT:?}"
18

19 # We clean the system
20

21 srun \
22 -n ${SLURM_JOB_NUM_NODES:?} \
23 -N ${SLURM_JOB_NUM_NODES:?} \

8

CHAPTER 2. AD HOC STORAGE SYSTEMS ADMIRE

24 bash -c "rm -rf ${TMP_PATH} ; mkdir -p ${GKFS_MNT} ${GKFS_ROOT}"
25

26 echo "Starting GEKKOFS_DAEMON " $SLURM_JOB_NUM_NODES
27

28 srun \
29 -N ${SLURM_JOB_NUM_NODES:?} \
30 -n ${SLURM_JOB_NUM_NODES:?} \
31 --cpus-per-task=1 \
32 -m cyclic \
33 --export="ALL" --oversubscribe \
34 /bin/bash -c "echo Starting Daemon \${SLURMD_NODENAME}; ${CMD} " &

Then we can use it with the clients :

1 LD_PRELOAD=$GKFS_PRELOAD userapp
2 srun -N 4 -n 48 --oversubscribe --export="ALL",LD_PRELOAD=${GKFS_PRLD} \
3 /bin/bash -c "parallel_userapp ${GKFS_MNT}/datadir"

It is important to note that these excerpts are presenting the status quo to use GekkoFS within an HPC job.
In the context of ADMIRE, most parts of the require setup will be transparent to the user, including the staging
of data between the PFS and the GekkoFS instance (see WP 4).

2.1.5 Updates

The following list includes the updates and progress since the last deliverable in October 2021 for GekkoFS
versions v0.9.0 and v0.9.1.

New

1. Added a new script for starting and stopping daemons on multiple nodes (beta version)

2. Added Statistic gathering on daemons

• Stats output can be enabled with:

– --enable-collection collects normal statistics
– --enable-chunkstats collects extended chunk statistics

• Statistics output to file is controlled by --output-stats <filename>.

3. Added Prometheus output

• New option to define gateway --prometheus-gateway <gateway:port>

• Prometheus output is optional with "GKFS_ENABLE_PROMETHEUS"

• --enable-prometheus creates a thread to push the metrics

4. Added new experimental metadata backend: Parallax

5. Added support to use multiple metadata backends.

6. Added –clean-rootdir-finish argument to remove rootdir/metadir at the end when the daemon finishes.

7. GekkoFS now uses C++17.

8. Added a new dirents_extended function which can improve find operations.

9. Code coverage reports for the source code are now generated and tracked

10. Considerable overhaul and new features of the GekkoFS testing facilities

11. Namespace have been added to the complete GekkoFS codebase

9

ADMIRE CHAPTER 2. AD HOC STORAGE SYSTEMS

12. The system call socketcall() is now supported

13. System call error codes are now checked in syscall_no_intercept scenarios in non x86 architectures.

14. GekkoFS documentation is now automatically generated and published.

15. Added a guided distributor mode which allows defining a specific distribution of data on a per directory
or file basis.

16. A convenience library has been added for unit testing.

17. Code format is now enforced with the clang-format tool

18. A new script is available in scripts/check_format.sh for easy of use.

19. GKFS_METADATA_MOD macro has been added allowing the MetadataModule to be logged, among
others.

20. A convenience library has been added for path_util

Changed

1. -c argument has been moved to --clean-rootdir-finish and is now used to clean root-
dir/metadir on daemon shutdown.

2. Environment variable to change Daemon log levels was changed from GKFS_LOG_LEVEL to
GKFS_DAEMON_LOG_LEVEL.

3. Update Catch2 to support newer glibc library.

4. Adding support for faccessat2() and getxattr() system calls.

5. GekkoFS license has been changed to GNU General Public License version 3

6. Create, stat, and remove operation have been refactored and improved, reducing the number of required
RPCs per operation.

7. Syscall_intercept now supports glibc version 2.3 or newer.

8. All arithmetic operations based on block sizes, and therefore chunk computations, are now constexpr.

9. The CI pipeline has been significantly optimized.

10. The GekkoFS dependency download and compile scripts have been severely refactored and improved.

11. GekkoFS now supports the latest dependency versions.

12. -c argument has been moved to --clean-rootdir-finish and is now used to clean rootdir/metadir
on daemon shutdown.

Removed

1. Removed old initialization code in the GekkoFS client.

2. Removed boost interval dependencies from guided distributor.

3. Boost is no longer used for the client and daemon. Note that tests still require Boost_preprocessor.

4. Unneeded sources in CMake have been removed.

Fixed

10

CHAPTER 2. AD HOC STORAGE SYSTEMS ADMIRE

1. Documentation: Doxygen now includes private struct and class members.

2. Guided distributor tests are no longer run when they are turned off.

3. Building tests no longer proceeds if virtualenv creation fails.

4. An error where unit tests could not be found has been fixed.

5. The daemon can now be restarted without losing its namespace.

6. An issue has been resolved that required AGIOS even if it wasn’t been used.

7. Several issues that caused docker images to fail has been resolved.

8. An CMake issue in path_util that caused the compilation to fail was fixed.

9. Fixed an issue where ls failed because newer kernels use fstatat() with EMPTY_PATH

10. Fixed an issue where LOG_OUTPUT_TRUNC did not work as expected.

2.1.6 ADMIRE application compatibility

GekkoFS is not considered a fully POSIX-compliant file system and relaxes some file system protocols to
minimise performance bottlenecks, that are typically occurring in distributed file systems due to complicated
global locking mechanisms, and therefore improves the overall I/O performance. Further, GekkoFS is not
a kernel-based file system which allows users to easily deploy it without administrative support and uses an
interposition library to intercept I/O calls before they are sent to the kernel. Based on studies [5, 11] which
analysed HPC applications and their behaviour, GekkoFS aims to optimise for these use cases and therefore
supporting most (but not all) applications. For instance, these studies have shown that some operations, e.g., a
rename(), is not used by the tested HPC applications and it is only used by users directly in an interactive
manner [2].

Currently, we are working on supporting rename() operations which is one of the use cases in ADMIRE’s
Software Heritage application. In addition, we will also support the mmap() and mmsync() operations which
is required by the Software Heritage application. As GekkoFS supports both POSIX I/O and MPI I/O interfaces,
we do not foresee other compatibility issues of ADMIRE applications at this time.

2.2 dataClay

In the following, we will present the dataClay object store design, deployment and its updates.

2.2.1 Design summary

dataClay [6] is a distributed object store with active capabilities. It is designed to hide distribution details while
taking advantage of the underlying infrastructure, such as of an HPC cluster or a highly distributed environment
such as edge-to-cloud.

Objects in dataClay are enriched with semantics, including the possibility to attach arbitrary user code to
them. In this way, dataClay enables applications to store and access objects in the same format they have in
memory, also allowing them to execute object methods within the store to exploit data locality. In this way,
only the results of the computation are transferred to the application, instead of the whole object.

dataClay is implemented at user-level, so it is visible to applications using its client library. dataClay can
be deployed in two different ways: as a service or as an ephemeral storage system, for which is currently being
optimised. In the first case, it is deployed as a long-lived service in a dedicated set of nodes, and objects can
be shared by multiple jobs or applications. In the second case, dataClay runs in the compute nodes assigned
for a job, such that the data, which it contains, must be persisted after completing the job, if needed. In
both cases, the active capabilities (in-store method execution) of dataClay minimise data transfers and copies,

11

ADMIRE CHAPTER 2. AD HOC STORAGE SYSTEMS

Figure 2.2: dataClay Architecture.

either between nodes when the application and dataClay run independently, or between the application and
the dataClay processes when both of them live in the same node. Additionally, regardless of the kind of
deployment, disk accesses are avoided as much as possible by means of an object cache, where objects are
already instantiated and ready to serve execution requests.

The architecture of dataClay is depicted in Figure 2.2. Please refer to D2.1 for more details on its design.

2.2.2 Use cases

The goal of dataClay is twofold. First, it provides transparent access to storage, meaning that data can be
accessed in the same format as it is managed in memory (i.e. objects). Second, it optimizes applications
performance by means of in-store function execution, thus avoiding data transfers from data store to application.
Although these are general aspects that can be applied to many kinds of applications, the ones that are most
benefited from dataClay are those manipulating objects at a coarse granularity, especially when the results are
much smaller than the input data, as much less data is transferred in this case.

2.2.3 Download and installation

dataClay is an open-source product, available at https://github.com/bsc-dom/dataclay. Addi-
tional material and documentation can be found at https://www.bsc.es/dataclay.

In the following, we will outline a brief step-by-step download and installation. More detailed instructions
and the required dependencies are available in previous links.

1. Ensure the required system dependencies are available.

2. Clone the dataClay repository:

git clone --recurse-submodules https://github.com/bsc-dom/dataclay

3. Package javaclay source code into a jar file:

mvn -f javaclay/pom.xml package

4. (Optional) For Python applications, install dataClay in Python, following either of the following alterna-
tives:

• From the pyclay folder:
python setup.py install

• Using pip:
pip install dataclay

12

https://github.com/bsc-dom/dataclay
https://www.bsc.es/dataclay

CHAPTER 2. AD HOC STORAGE SYSTEMS ADMIRE

2.2.4 Running dataClay

As detailed in D2.2, the architecture of dataClay is composed of two main components: the Logic Module and
the dataClay Backends. The Logic Module is a central repository that handles object metadata and management
information. Each Backend handles object persistence and execution requests.

In order to deploy dataClay on a cluster of N nodes, one possible setup is to assign 1 node for the Logic
Module and N − 1 nodes for the Backends (this scenario can be easily extrapolated to more complex ones, for
example, deploying a backend in the Logic Module node, or sharing one node for multiple backends.

Considering the proposed setup, the deployment would be as follows:
Deploy the Logic Module in one node:

1. Define the necessary environment variables (you may want to change the default values):

• export LOGICMODULE_PORT_TCP=11034

• export LOGICMODULE_HOST=127.0.0.1

• export DATACLAY_ADMIN_USER=admin

• export DATACLAY_ADMIN_PASSWORD=admin

2. Deploy the Logic Module:

java -cp <jar_path> es.bsc.dataclay.logic.server.LogicModuleSrv

The rest of the nodes deploy a Backend (referred to as DATASERVICE in the environment variables):

1. Define the necessary environment variables (you may want to change the default values):

• export DATASERVICE_NAME=DS1

• export DATASERVICE_JAVA_PORT_TCP=2127

• export LOGICMODULE_PORT_TCP=11034

• export LOGICMODULE_HOST=127.0.0.1

2. Deploy the Storage Location and the Java Execution Environment:

java -cp <jar_path> es.bsc.dataclay.dataservice.server.DataServiceSrv

3. For Python applications, deploy the Python Execution Environment:

python -m dataclay.executionenv.server --service

In order to connect your applications with dataClay you need a client library for your preferred program-
ming language. If you are developing a Java application, you can add the following dependency into your pom
file to install the Java client library for dataClay version 2.6:

1 <dependency>
2 <groupId>es.bsc.dataclay</groupId>
3 <artifactId>dataclay</artifactId>
4 <version>2.6.1</version>
5 </dependency>

Notice that this section presents the general installation and deployment instructions for dataClay, but most
of these steps will be transparent to the user in the context of ADMIRE.

13

ADMIRE CHAPTER 2. AD HOC STORAGE SYSTEMS

2.2.5 Updates

Although dataClay can be used as an ephemeral data store, it is not optimised for this purpose, and some
adaptations are required in order to use it effectively as an ad hoc storage system. An initial list of required
changes was described in D2.1, including the optimisation of stage-in/stage-out, enabling malleability, and
support for non-volatile memories. Since the last deliverable D2.1, some features in these directions have been
incorporated into dataClay.

First, dataClay now incorporates support for non-volatile memories, taking advantage of their byte-
addressability to further exploit data locality, avoiding data movements not only between the object store and
the application but also within the object store itself, eliminating the need to copy data to main memory for
execution. The current implementation is based on pynvm2, a Python implementation of bindings to the Per-
sistent Memory Development Kit (PMDK)3, and it allows to store and retrieve numpy arrays from a NVM
device during a Python application execution. The implementation leverages the byte-addressable nature of
NVM through the Direct Access (dax) feature, which enables direct load/store access to persistent memory
by memory-mapping files on a persistent memory aware file system. According to our experiments evaluating
this implementation, the benefits provided by the NVM support to dataClay depend on the application access
patterns. The greater performance improvements are obtained in read-bound applications with data reuse.

Second, the ability to dynamically increase the number of backends is also supported. This functionality
allows to add a new dataClay backend during application execution, which will be used to manage part of
the objects created from that point on. At the moment, no redistribution of the previously existing objects is
performed.

Finally, we have benchmarked the stage-in process in dataClay and identified that its main bottleneck is the
way in which metadata is currently managed. In order to solve this problem and make dataClay appropriate
as an ad hoc object store, we have designed a distributed metadata service based on the etcd distributed key-
value store. This solution provides reliability as well as strong consistency guarantees and, according to our
benchmarks, at the same time is much more efficient than the current metadata handling in dataClay. We are
currently implementing this approach, which will not only improve the stage-in process but also accelerate
other operations during application execution.

2.2.6 ADMIRE application compatibility

Although ADMIRE applications are not currently using object stores (see D7.1), we have identified some initial
possibilities for the incorporation of dataClay in order to optimize their execution. A candidate application is
Software Heritage Analytics, as it exhibits some characteristics that are suitable for dataClay. In particular, it
is written in Java and Python (as well as Scala), which are the languages supported by dataClay. Also, the
application performs in-situ operations, for which the active capabilities of dataClay can be leveraged.

Another candidate is ADMIRE’s Environment4 application. Although it is written in C++, which is cur-
rently not supported by dataClay, the fact that it uses NetCDF provides the possibility to abstract the dataClay
API behind a NetCDF-compliant interface, making the application agnostic to the incorporation of dataClay,
and providing the possibility to optimise its performance by executing part of the operations within the object
store, also taking advantage of NVM devices.

2.3 Expand

In the following, we will briefly introduce the key points of Expand ad hoc parallel file system, its updates over
the past months, and discuss its application compatibility.

2https://github.com/pmem/pynvm
3https://github.com/pmem/pmdk
4https://github.com/ccmmma/wacommplusplus

14

https://github.com/pmem/pynvm
https://github.com/pmem/pmdk
https://github.com/ccmmma/wacommplusplus

CHAPTER 2. AD HOC STORAGE SYSTEMS ADMIRE

2.3.1 Design summary

Expand is a parallel file system based on standard servers, as described in Deliverable D2.1. This section
describes the work developed to convert Expand into an ad hoc parallel file system.

Figure 2.3 shows the structure of Expand as an ad hoc parallel file system. This structure is based on a
series of data servers running on the compute nodes that communicate with each other using MPI. The use of
MPI facilitates the standardisation of Expand and its use in HCP environments.

Figure 2.3: The Expand Ad hoc architecture.

Parallel data partitions are created on the ad hoc servers on the local storage devices (HDD or SSD) using
the services provided by the local operating system. The applications are deployed on the compute nodes
and communicate with the Expand servers also using MPI. As can be seen in the figure, applications can be
deployed on nodes without ad hoc servers and servers can be deployed on nodes where no applications are
running.

Figure 2.4 shows the internal details of the Expand as ad hoc parallel file system. Next section describes
some aspects of Expand design.

2.3.1.1 Data distribution and files

Expand combines several Expand MPI ad hoc servers (see Figure 2.4) in order to provide a generic parallel
partition. Each server provide one or more directories that are combined to build a distributed partition to use in
compute nodes. All files in the system are striped across all ad hoc servers to facilitate parallel access, with each
server storing conceptually a subfile of the parallel file. A file consists of several subfiles, one for each ad hoc
server. All subfiles are fully transparent to the Expand users. On a parallel partition, the user can create stripped
files with cyclic layout. In these files, blocks are distributed across the partition following a round-robin pattern.
As shown in Figure 2.5, the user data file is the file stored in Expand and the block size is the capacity used in
Expand for distributed the blocks among all servers. This block size is independent of the structure used in the
backend parallel file system.

2.3.1.2 Naming and metadata management

Partitions in Expand are defined using a small configuration file. For example, the following configuration file
defines a partition with two ad hoc servers and an block size of 512 KB. For each server, a directory must be
specified. All files will be storage in this directory.

15

ADMIRE CHAPTER 2. AD HOC STORAGE SYSTEMS

Figure 2.4: The Expand ad hoc detailed architecture.

Figure 2.5: The file structure and directory mapping in Expand.

1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <xpn_conf>
3 <partition name="xpn" type="NORMAL" bsize="512k" >
4 <data_node id="<node ID>" url="mpiServer://<server name or IP>/<storage path1>"/>
5 <data_node id="<node ID>" url="mpiServer://<server name or IP>/<storage path2>"/>
6 </partition>
7 </xpn_conf>

Each subfile of a Expand file (see Figure 2.5) has a small header at the beginning of the subfile, which stores
the file’s metadata. This metadata includes the following information: stride size, base node, that identifies the

16

CHAPTER 2. AD HOC STORAGE SYSTEMS ADMIRE

ad hoc server where the first block of the file resides and the file distribution pattern used. Currently, we only
use files with cyclic layout.

All subfiles have a header for metadata, although only one node, called master node stores the current
metadata. The master node can be different from the base node. To simplify the naming process and reduce
potential bottlenecks, Expand does not use any metadata manager. Figure 2.5 shows how directory mapping is
made in Expand.

The metadata of a file resides in the header of a subfile stored in an ad hoc server. This server is the master
node of the file. To obtain this node, the file name is hashed into the number of node.

Because the determination of the master node is based on the file name, when a user renames a file, the
master node for that file changes. To rename a file, the Expand applies the following algorithm:

rename(oldname, newname) {
oldmaster = hash(oldname)
newmaster = hash(newname)
move the metadata subfile from oldmaster to newmaster

}

2.3.1.3 Parallel Access

All file operations in Expand use a virtual filehandle. This virtual filehandle is the reference used in Expand
to reference all operations. When Expand needs to access to a subfile, it uses the appropriated filehandle. To
enhance I/O, user requests are split by the Expand library into parallel subrequests sent to the involved servers.
When a request involves k ad hoc servers, Expand issues k requests in parallel to the servers, using threads to
parallelise the operations. The same criteria is used in all Expand operations. A parallel operation to k servers
is divided into k individual operations that are provided by ad hoc servers.

2.3.1.4 Data stage-in/stage-out operations

Data stage-in operations are performed in parallel from the backend parallel file system to the ad hoc servers
without the intervention of any client application. Each server builds the corresponding subfile in its local
storage space, reading the data from the file stored on the backend file system. This operation is performed in
parallel in all ad hoc servers.

In the same way, data stage-out are performed in parallel. Each server writes the blocks stored in his local
subfile to the final file in the backend parallel file system.

Although these operations could be performed using a normal POSIX application, we have developed
two new system calls that allow these operations to be performed directly from the servers with improved
performance. This system calls are:

• Preload, which copies a file from the backend file system to the Expand partition;

• Flush, which writes a file from the Expand partition to the final backend file system.

2.3.2 Use cases

Expand provides POSIX interface that is appropriate for a wide range of applications. Nevertheless, in the next
months, we will further investigate the workloads more appropriate for Expand.

2.3.3 Download and installation

The Expand File System repository is available at:

• Source code: https://github.com/xpn-arcos/xpn

• Documentation: https://xpn-arcos.github.io/arcos-xpn.github.io/

17

https://github.com/xpn-arcos/xpn
https://xpn-arcos.github.io/arcos-xpn.github.io/

ADMIRE CHAPTER 2. AD HOC STORAGE SYSTEMS

The Expand repository is continuously extended with advanced information, such as file system architec-
ture, installation and running details, etc.

In order to deploy Expand, you have to follow the next steps:

1. Install required software (pre-requisites).

2. Download and configure Expand.

3. Compile and Install Expand.

Install the required software

To install the required software, please follow the next steps:

1. Please ensure you have already installed the following system software:

sudo apt-get install -y autoconf automake sysutils gcc g++ make libmxml-dev

2. Install MPICH (at least version 3.4.2 or higher):

sudo apt-get install -y mpich libmpich-dev mpich-doc

Download and configure Expand

1. Clone the last version of the Expand source code:

git clone https://github.com/xpn-arcos/xpn.git

2. Access into the installation directory, which from now on we will denote as <xpn_path>:

cd xpn

3. Generate the installation files:

./autogen.sh

4. Configure Expand, usually:

./configure --prefix=<install_path> --enable-mpiserver=<mpich_path>

The --prefix is used to change the default directory in which Expand will be installed. This switch is
optional, and it common used if your UNIX user do not have enough permissions on the default directory.
The --enable-mpiserver switch is used to enable the mpiserver module of Expand. If MPICH has
not been installed in its default installation path (e.g.: /usr/bin), it is necessary to specify the path in
which it has been installed (--enable-mpiserver=<mpich_path>).

Compile and Install Expand

1. Compile Expand:

make -j

2. Install Expand:

make install

3. Compile the interception library:

cd <xpn_path>/bypass && make -j

4. Compile the mpiserver:

18

CHAPTER 2. AD HOC STORAGE SYSTEMS ADMIRE

cd <xpn_path>/external-utils/mpiServer && make -j

The key elements of Expand File System are now available in the following paths:

• Expand client library:

– <install_path>/include/xpn.h

– <install_path>/lib/libxpn.a

• Expand client interception library: <xpn_path>/bypass/xpn_bypass.so

• Expand MPI server: <xpn_path>/external-utils/mpiServer/mpiServer.exe

2.3.4 Running Expand

The Expand File System is based on the client-server paradigm, such that we need to run the server first, then
run the client(s).

Running Expand mpiServer

To start the mpiServers the following steps must be followed:

1. If the MPICH hydra nameserver is not running in the current host, please execute:

HYDRA_HOSTNAME=$(hostname)
[<mpich_path>/bin/]hydra_nameserver &
sleep 1

If you install MPICH with the --prefix switch then you need to use the <mpich_path>/bin/, oth-
erwise it is not needed.

2. List the machines to be used in the <hostfile_server> file.

3. Start the mpiServer (with N processes distributed on the machines listed in the <hostfile_server>

file) by running:

[<mpich_path>/bin/]mpiexec -hostfile <hostfile_server> -np <N> -nameserver
${HYDRA_HOSTNAME} <xpn_path>/external-utils/mpiServer/mpiServer.exe↪→

Running Expand client

1. Create the configuration file for the Expand Client where you specify the mpiServer nodes
(mpiServer://<server>/<path>).

2.a Run the existing client binary (with M processes distributed on the machines in the <hostfile_client>
file) by using:

[<mpich_path>/bin/]mpiexec -hostfile <hostfile_client> -np <M> -nameserver
${HYDRA_HOSTNAME} -genv LD_PRELOAD=<xpn_path>/bypass/xpn_bypass.so>
<client_binary>

↪→

↪→

2.b If the client binary use the Expand API then you can execute (without intercepting the POSIX system
calls) by running:

[<mpich_path>/bin/]mpiexec -hostfile <hostfile_client> -np <M> -nameserver
${HYDRA_HOSTNAME} <client_binary>↪→

One example of configuration file for the mpiServer module of Expand Client is:

19

ADMIRE CHAPTER 2. AD HOC STORAGE SYSTEMS

1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <xpn_conf>
3 <partition name="expand1" type="NORMAL" bsize="512k" >
4 <data_node id="dn1" url="mpiServer://hostname_1/mnt/xpn"/>
5 <data_node id="dn2" url="mpiServer://hostname_2/mnt/xpn"/>
6 </partition>
7 </xpn_conf>

Where the label partition enables the definition of the structure of a storage partition. For each partition,
we define each one of the servers used to form the partition. The servers are defined by a URL which is unique
within a partition, not being able to use the same URL more than once per partition. The current prototype only
allows the definition of one only partition.

Using this configuration file, the name used for a file in Expand is, for example:

xpn://expand1/dirA/filename

We use URI for naming. This file is distributed in the partition using two servers: hostname_1 and
hostname_2. In each server the subfile used for this Expand file is:

/mnt/xpn/dirA/filename

In the Expand configuration file, the type label identifies the type of file:

• NORMAL, which is a normal partition with cyclic layout;

• FT, which is a partition with fault tolerant support.

In the current prototype, only NORMAL partitions are supported.

2.3.5 Updates

The following list includes the updates and progress since D2.1 in October 2021 for ad hoc Expand version.

1. New version of the system call interception library.

2. New ad hoc Expand server developed.

3. New ad hoc Expand client developed.

4. New installation manual.

2.3.6 ADMIRE application compatibility

Expand, as GekkoFS, is not a kernel-based file system and requires a interposition library to intercept I/O system
calls before they are sent to the kernel. Expand provides a POSIX-compliant for read and write operations.
Nevertheless, some operations, such as the renaming of the same file, may cause problems when is performed
in parallel by several clients. However, this is not considered a typical operation in an HPC environment.

2.4 Hercules IMSS (in-memory storage system)

In the ADMIRE project, we designed and implemented Hercules IMSS that can be considered a fully POSIX-
compliant file system.

20

CHAPTER 2. AD HOC STORAGE SYSTEMS ADMIRE

COMPUTE NODE

APPLICATION

IMSS CLIENT

COMPUTE NODE

APPLICATION

IMSS CLIENT

COMPUTE NODE

APPLICATION

IMSS CLIENT

IMSS SERVER 3

COMPUTE/STORAGE
NODE

ZeroMQ

MAIN MEMORY

DATA

IMSS SERVER 2

COMPUTE/STORAGE
NODE

MAIN MEMORY

DATA

IMSS SERVER 1

COMPUTE/STORAGE
NODE

MAIN MEMORY

DATA

IMSS METADATA
SERVER n

COMPUTE/STORAGE
NODE

MAIN MEMORY

METADATA

IMSS METADATA
SERVER 1

COMPUTE/STORAGE
NODE

MAIN MEMORY

METADATA

. . .

- - - IMSS Instances

Figure 2.6: Representation of an IMSS deployment.

2.4.1 Design summary

As, shown in Figure 2.6, the architectural design of IMSS follows a client-server design model where the client
itself will be responsible of the server entities deployment. We propose an application-attached deployment
constrained to application’s nodes and an application-detached considering offshore nodes.

The development of the present work was strictly conditioned by a set of well-defined objectives. Firstly,
IMSS should provide flexibility in terms of deployment. To achieve this, the IMSS API provides a set of
deployment methods where the number of servers conforming the instance, as well as their locations, buffer
sizes, and their coupled or decoupled nature, can be specified. Second, parallelism should be maximised. To
achieve this, IMSS follows a multi-threaded design architecture. Each server conforming an instance counts
with a dispatcher thread and a pool of worker threads. The dispatcher thread distributes the incoming workload
between the worker threads with the aim of balancing the workload in a multi-threaded scenario. Main entities
conforming the architectural design are IMSS clients (front-end), IMSS server (back-end), and IMSS metadata
server. Addressing the interaction between these components, the IMSS client will exclusively communicate
with the IMSS metadata server whenever a metadata-related operation is performed, such as: create_dataset
and open_imss. Data-related operations (get_data & set_data) will be handled directly by the corresponding
storage server. Finally, IMSS offers to the application a set of distribution policies at dataset level increasing the
application’s awareness about the location of the data. As a result, the storage system will increase awareness
in terms of data distribution at the client side, providing benefits such as data locality exploitation and load
balancing.

Two of the most suitable network interfaces are sockets and Remote Procedure Calls (RPCs). To choose
the best one, we made a comparison between several communication mechanisms sockets, gRPC, and we
chose ZeroMQ [3] in order to handle communications between the different entities conforming an IMSS
instance5. ZeroMQ has been qualified as one of the most efficient libraries for creating distributed applications
[4]. ZeroMQ provides multiple communication patterns across various transport layers, such as inter-threaded,
inter-process, TCP, UDP, and multicast. ZeroMQ provides a performance-friendly API with an asynchronous
I/O model that promotes scalability. In addition, ZeroMQ library offers zero-copy messages, avoiding further
overheads due to data displacements.

Furthermore, to deal with the IMSS dynamic nature, a distributed metadata server, resembling CEPH model
[12], was included in the design step. The metadata server is in charge of storing the structures representing
each IMSS and dataset instances. Consequently, clients are able to join an already created IMSS as well as
accessing an existing dataset among other operations.

5(https://gitlab.arcos.inf.uc3m.es/mandres/imss/blob/master/Middleware_Comparison.pdf)

21

https://gitlab.arcos.inf.uc3m.es/mandres/imss/blob/master/Middleware_Comparison.pdf

ADMIRE CHAPTER 2. AD HOC STORAGE SYSTEMS

2.4.2 Use cases

Two strategies were considered so as to adapt the storage system to the application’s requirements. On the one
hand, the application-detached strategy, consisting of deploying IMSS clients and servers as process entities
on decoupled nodes. IMSS clients will be deployed in the same computing nodes as the application, using
them to take advantage of all available computing resources within an HPC cluster, while IMSS servers will
be in charge of storing the application datasets and enabling the storage’s execution in application’s offshore
nodes. In this strategy, IMSS clients do not store data locally, as this deployment was thought to provide an
application-detached possibility. In this way, persistent IMSS storage servers could be created by the system and
would be executed longer than a specific application, so as to avoid additional storage initialisation overheads
in execution time. Figure 2.7 (left) illustrates the topology of an IMSS application-detached deployment over
a set of compute and/or storage nodes where the IMSS instance does not belong to the application context nor
its nodes.

On the other hand, the application-attached deployment strategy seeks empowering locality exploitation
constraining deployment possibilities to the set of nodes where the application is running, so that each appli-
cation node will also include an IMSS client and an IMSS server, deployed as a thread within the application.
Consequently, data could be forced to be sent and retrieved from the same node, thus maximising locality pos-
sibilities for data. In this approach each process conforming the application will invoke a method initialising
certain in-memory store resources preparing for future deployments. However, as the attached deployment
executes in the applications machine, the amount of memory used by the storage system turns into a matter
of concern. Considering that unexpectedly bigger memory buffers may harm the applications performance,
we took the decision of letting the application determine the memory space that a set of servers (storage and
metadata) executing in the same machine shall use through a parameter in the previous method. This decision
was made because the final user is the only one conscious about the execution environment as well as the appli-
cations memory requirements. Flexibility aside, as main memory will be used as storage device, an in-memory
store will be implemented so as to achieve faster data-related request management. Figure 2.7 (right) displays
the topology of an IMSS application-attached deployment where the IMSS instance is contained within the
application.

COMPUTE NODE

APPLICATION

IMSS Client 1

IMSS Server 1

COMPUTE NODE

APPLICATION

IMSS Client 2

IMSS Server 2

COMPUTE NODE

APPLICATION

IMSS Client n

IMSS Server n

. . .

IMSS Metadata Server

. . .

COMPUTE NODE

APPLICATION

IMSS Client 1

COMPUTE NODE

APPLICATION

IMSS Client 2

COMPUTE NODE

APPLICATION

IMSS Client n

. . .

COMPUTE/STORAGE
NODE

IMSS Server 1

IMSS
Server2

IMSS DEPLOYMENT

IMSS Server n

COMPUTE/STORAGE
NODE

COMPUTE/STORAGE
NODE

IMSS DEPLOYMENT

IMSS DEPLOYMENT

IMSS
Metadata
Server

Figure 2.7: IMSS application-detached deployment (left side) vs IMSS application-attached deployment (right
side).

2.4.3 Download and installation

Hercules IMSS repository is available at: https://gitlab.arcos.inf.uc3m.es/admire/imss.
The repository contains the following folder structure. The following software packages are required for the
compilation of Hercules IMSS:

• CMake

22

https://gitlab.arcos.inf.uc3m.es/admire/imss

CHAPTER 2. AD HOC STORAGE SYSTEMS ADMIRE

• ZeroMQ

• Glib

• tcmalloc

• FUSE

• MPI (MPICH or OpenMPI)

Hercules IMSS is a CMAKE-based project, so the compilation process is quite simple:

1 mkdir build
2 cd build
3 cmake ..
4 make

As a result the project generates the following outputs:

• mount.imss: run as daemons the necessary instances for Hercules IMSS. Later, it enables the usage
of the interception library with execution persistency.

• umount.imss: umount the file system by killing the deployed processes.

• libimss_posix.so: dynamic library of intercepting I/O calls.

• libimss_shared.so: dynamic library of IMSS’s API.

• libimss_static.a: static library of IMSS’s API.

• imfssfs: application for mounting HERCULES IMSS at user space by using FUSE engine.

2.4.4 Usage

The current prototype of Hercules IMSS enables the access to the storage infrastructure in three different ways:
API library, FUSE, and LD_PRELOAD by overriding symbols. In the following subsections, we describe the
characteristics of each alternative.

2.4.4.1 API

Hercules IMSS is defectively accessible by using C-based API. This API includes the following calls:

• hercules_init: initializes the infrastructure required to deploy an IMSS attached server within the calling
client. Besides, it deploys an attached metadata server if requested.

• hercules_release: releases infrastructure resources of an attached deployment.

• stat_init: creates a communication channel with every metadata server. Besides, the former method
declares additional resources that will be required throughout the client session.

• stat_release: releases resources required to communicate with the metadata servers and additional ses-
sion parameters.

• init_imss: deploys an IMSS detached instance or initializes an IMSS attached one.

• open_imss: joins to an existing IMSS instance enabling access to the stored datasets.

• release_imss: releases resources required to communicate with an IMSS instance as well as the every
IMSS instance server if requested.

23

ADMIRE CHAPTER 2. AD HOC STORAGE SYSTEMS

• create_dataset: creates a new dataset within a previously created or joined IMSS instance.

• open_dataset: subscribes to an existing dataset within a previously created or joined IMSS instance.

• release_dataset: frees resources required to read and write blocks of a certain dataset.

• get_data: retrieves a certain block of a previously created or opened dataset from one of the IMSS
servers conforming the instance.

• set_data: stores a certain block of a previously created or opened dataset into a set of IMSS servers part
of the same instance.

• get_type: given a certain URI, the former method returns if it corresponds to an IMSS instance or dataset.

The below code excerpt depicts an usage example of Hercules IMSS by using the proposed API. The
example creates a determined number of datasets in-memory.

1 char metadata[] = "./metadata";
2 char localhost[] = "localhost";
3 char imss_test[] = "imss://berries";
4 char hostfile[] = "./hostfile";
5

6 //Hercules init -- Attached deploy
7 if (hercules_init(rank, 2048, 5555, 5569, 1024, metadata) == -1) exit(-1);
8

9 //Metadata server
10 if (stat_init(localhost, 5569, rank) == -1) exit(-1);
11

12 //Imss deploy
13 if (init_imss("imss://berries", hostfile, 1, 5555, 1024, ATTACHED, NULL) == -1)

exit(-1);↪→

14

15 //Dump data -- Remark: DATA MUST BE IN DYNAMIC MEMORY
16 for(int i = 0; i < NUM_DATASETS; ++i){
17 int datasetd_;
18 char dataset_uri[32];
19 sprintf(dataset_uri, "imss://berries/%d", i);
20

21 //Create dataset, 1 Block of 1 Kbyte
22 if ((datasetd_ = create_dataset(dataset_uri, "RR", 1, 1024, NONE)) < 0) exit(-1);
23

24 char * buffer = (char *) malloc(1024 * 1024 * sizeof(char));
25

26 //Fill the buffer with \n
27 memset((void*) buffer, 0, 1024 * 1024);
28

29 //Copy the used data
30 char const * testdata = "\na\nab\nabc\nabcd\nabcde\nabcdef\nabcdefg"
31 "\na\nbb\nccc\ndddd\neeeee\nffffff\nggggggg"
32 "\n1\n22\n\n333\n";
33 memcpy(buffer, testdata, strlen(testdata));
34

35 //Set the data in 2 Blocks
36 int32_t data_sent = set_data(datasetd_, 0, (unsigned char*)buffer);
37 release_dataset(datasetd_);
38 }

2.4.4.2 FUSE

We have constructed a file system layer on top of the previously described library. The in-memory file sys-
tem currently supports both data and metadata operations, such as file permissions, ownership, folders, and

24

CHAPTER 2. AD HOC STORAGE SYSTEMS ADMIRE

namespaces. Files and folders are presented as datasets inside Hercules IMSS, conforming a hierarchical repre-
sentation supported by URIs, which univocally identifies each dataset. Data is partitioned into multiple blocks,
reserving the first block for storing metadata. We distinguish between inner metadata, which represents the
classical POSIX-like metadata mainly represented by the struct stat representation and outer metadata, which
depicts the metadata related to the data blocks location and the applied distribution policy. Inner metadata is
stored as a data block on each data set. Outer metadata is maintained by a separate metadata server. Hercules
IMSS supports attached and detached metadata servers.

Using the call above, we have to mount the Hercules IMSS file system using FUSE.

./imssfs -p 5555 -m 5569 -M ./metadata -h ./hostfile -b 1000000 -r imss:// -a
./stat_hostfile -S 10000000000 -d 0 -B 1048576000 -l /mnt/imss/↪→

The mount call requires the following parameters:

• -p: determines the listening port number of the I/O servers.

• -m: indicates the port number of the external/internal metadata server.

• -h: requires a file containing the hostnames of all I/O server involved.

• -b: specifies the block size employed for all network data transfers used by ZeroMQ.

• -r: determines the default dataset root for the deployed file system.

• -a: requires a file containing the hostnames of all metadata servers involved.

• -s: the maximum capacity in bytes of the storage system.

• -d: determines the deployment mode. 0 indicates an attached deployment strategy (metadata and data
services are instantiated as a FUSE process) and 1 indicates a completely detached deployment, is such
a way, both data and metadata servers have to be executed as independent processes.

• -l: indicates the mount point path.

2.4.4.3 LD_PRELOAD

The project repository provides support for running Hercules IMSS overriding I/O calls by using the
LD_PRELOAD environment variable. Both data and metadata calls are currently intercepted by the imple-
mented dynamic library.

LD_PRELOAD=libimss_posix.so ls -l /mnt/imss/

2.4.5 Updates

The current version of Hercules IMSS have been tested and evaluated by using IO500 benchmark6. This bench-
mark executes both data and metadata micro-benchmarks in order to measure the efficiency of the target file
system. Current prototype successfully passed the full version of IO500, which includes IOR and MDBENCH
benchmarks. These benchmarks test and evaluate the performance by using different I/O calls of the POSIX
interface.

1 IO500 version io500-sc21-scc_v1-14 (standard)
2 [RESULT] ior-easy-write 0.124110 GiB/s : time 30.017 seconds
3 [RESULT] mdtest-easy-write 0.660125 kIOPS : time 2.524 seconds
4 [] timestamp 0.000000 kIOPS : time 0.000 seconds
5 [RESULT] ior-hard-write 0.072691 GiB/s : time 30.007 seconds
6 [RESULT] mdtest-hard-write 0.470201 kIOPS : time 31.063 seconds
7 [RESULT] find 3.032690 kIOPS : time 4.990 seconds
8 [RESULT] ior-easy-read 0.120736 GiB/s : time 30.854 seconds

6https://github.com/IO500/io500.

25

https://github.com/IO500/io500

ADMIRE CHAPTER 2. AD HOC STORAGE SYSTEMS

9 [RESULT] mdtest-easy-stat 2.714802 kIOPS : time 1.370 seconds
10 [RESULT] ior-hard-read 0.121106 GiB/s : time 18.011 seconds
11 [RESULT] mdtest-hard-stat 2.664673 kIOPS : time 6.305 seconds
12 [RESULT] mdtest-easy-delete 0.505189 kIOPS : time 2.986 seconds
13 [RESULT] mdtest-hard-read 1.402222 kIOPS : time 11.079 seconds
14 [RESULT] mdtest-hard-delete 0.639612 kIOPS : time 23.109 seconds
15 [SCORE] Bandwidth 0.107170 GiB/s : IOPS 1.151233 kiops : TOTAL 0.351251

2.4.6 ADMIRE application compatibility

Given the cooperation with the WP 7, Hercules IMSS fully accomplishes the requirements of ADMIRE’s use
cases. As discussed in the regular WP 2 meetings, Hercules IMSS is compatible with the I/O services required
by all use cases. For this reason, we have extended the initial prototype to two novel file access systems (FUSE
and I/O interception). Hercules IMSS enables multiple parameter configuration for adapting tits behaviour
to different use case scenarios such as the internal block size, number of I/O nodes, the maximum memory
capacity, etc.

26

3 Applications analysis

This section will discuss new insights in the on-going analysis of the HPC applications (here, the molecule
simulation and turbulence simulation applications) in the ADMIRE project and how studying the demonstrated
I/O pattern of these applications can lead to design better ad hoc storage system semantics. With this analysis,
we aim to understand the application I/O behaviour in a realistic scientific environment setting and the real-
world use cases. In this section, we will show the results by running the applications on the MOGON II 1

cluster at the Johannes Gutenberg University Mainz (JGU).

3.1 Molecule simulation

The system requires to set up the computation according to the input information in cp.in. The name list
gives information about the number of position of the ions. In the Quantum Espresso application used for
molecule simulation, the master process reads all the information as an input and broadcast the information
to the all processors for computation. Each computations contains fourier transform and matrix multiplication
operations. Computations are done in loop phases and after each phase some parameters are updated. There
is a possibility to checkpoint after each loop to restart the simulation. In the end, the information is being
aggregated and written to the storage using one process. Kindly refer to D7.1 for more general information on
the Quantum Espresso application.

3.1.1 I/O behaviour

The behaviour of Quantum Espresso depends on the problem and its performance greatly depends on the
physical cases. Fortran I/O and XML files are used to write data and log files. At the end of each phase of
Car-parinello algorithm, an explicit synchronisation barrier is performed. Therefore, this strict MPI hierarchy
composes the majority of the execution time. The I/O consists of read and write operations which are issued
by the master processes initiating the data broadcast and synchronisation by the end of each loop. Therefore,
it demonstrates a bursty I/O behaviour. However, most of the execution time is spent in MPI barriers. We
ran the Quantum Espresso Car-parinello application and Covid protein data set. The simulation was ran using
MPI+OMP and the input control parameters are the following:

1 &control
2 calculation='cp',
3 ...
4 nstep=50, # number of Car-Parrinello steps performed in this run
5 iprint=1, # band energies are written every iprint iterations
6 isave=1, # number of steps between successive saving of information
7 dt=1.0d0, # time step for molecular dynamics.
8 tstress = .true. # write stress tensor to standard output each "iprint" steps.
9 tprnfor = .true. # automatically calculate forces

10 disk_io = 'high', # XML data file I/O size
11 verbosity = 'high', # verbosity of the output
12

1https://hpc.uni-mainz.de, Apr. 2022

27

https://hpc.uni-mainz.de

ADMIRE CHAPTER 3. APPLICATIONS ANALYSIS

We ran the simulation using 1200 and 2400 processor cores on 32 and 64 nodes, respectively. Each node is
equipped with two 16-core Skylake processors (Xeon Gold 6130) and connected via OmniPath 100 gbps and
consists of 192 GiB ram.

The runtime for the entire covid protein simulation with the above setting was 16 hours for the 32 node
setup and 9 hours for the 64 core setup. The resulted outputs were written by four worker processors. The total
execution time in our setup is bounded by memory and strict MPI hierarchy and barriers. The I/O intensity
increases by activating checkpoints in the simulation. Many use cases of the molecular dynamic simulation can
benefit from checkpoints for further data extraction and also to have the possibility of restarting the simulation
with a different number of MPI processes. The size of the checkpoint files can be up to several terabytes and
therefore these systems can benefit from faster storage systems, e.g., ad hoc storage systems, to decrease I/O
overhead. Since the Quantum Espresso simulation performs intensive writes through master processes, these
simulations can benefit from local writes on the file system as well.

3.2 Turbulence simulation

I/O behaviour in the turbulence simulation by running the Nek5000 application depends on the simulation
cases. We analysed the Nek5000 workload by running the provided example of bentpipe introduced in D7.1.
We ran the example using a smaller setting (for more reasonable runtimes) and using the Darshan2 I/O profiler.
Figure 3.1 shows the Darshan profiling of the bentpipe simulation. As shown in Figures 3.1b and 3.1c, the I/O
accesses consist of small sequential reads and writes to a binary file. Each rank writes on a different chunk of
a shared binary file using MPI-IO.

I/O occurs at regular intervals and the divisions to when and how to write data is taken at the beginning of
the simulation. These steps need to be chosen carefully as it can affect the performance, i.e., runtime, of the
simulation. The I/O percentage of the execution time drastically increases as the sampling and checkpointing
frequency increases. The higher sampling frequency can help with achieving a higher accuracy of the simula-
tion. It also can be used for post-processing of the unprocessed data. The Nek5000 simulation can therefore
benefit from a faster I/O system, e.g., via ad hoc storage systems, to store more sampling data points for later
analyses. However, data size is also a decisive factor in increasing the checkpointing frequency. In addition to
a faster storage, online lossless compression techniques can be useful to sample more data in the duration of
the simulation run.

2https://www.mcs.anl.gov/research/projects/darshan

28

https://www.mcs.anl.gov/research/projects/darshan

CHAPTER 3. APPLICATIONS ANALYSIS ADMIRE

 0

 20

 40

 60

 80

 100

PO
SIX

M
PI-IO

STD
IO

P
e
rc

e
n
ta

g
e
 o

f
ru

n
 t
im

e

Read
Write

Metadata
Other (including application compute)

Average I/O cost per process

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

0-100

101-1K

1K-10K

10K-100K

100K-1M

1M
-4M

4M
-10M

10M
-100M

100M
-1G

1G
+

C
o
u
n
t
(T

o
ta

l,
 A

ll
P

ro
c
s
)

Read Write

MPI-IO Access Sizes ‡

(b)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

Read Write

O
p
s
 (

T
o
ta

l,
 A

ll
P

ro
c
s
)

Total
Sequential

Consecutive

POSIX I/O Pattern

(c)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

0-100

101-1K

1K-10K

10K-100K

100K-1M

1M
-4M

4M
-10M

10M
-100M

100M
-1G

1G
+

C
o
u
n
t
(T

o
ta

l,
 A

ll
P

ro
c
s
)

Read Write

POSIX Access Sizes

(d)

Figure 3.1: Darshan profiling of the bentpipe simulation

29

4 Conclusion

In this prototype deliverable, we have presented how to download, build, test, and run each of the four ad hoc
storage systems that are considered in the ADMIRE project. We have therefore included detailed instructions to
download, build and run these storage systems. We have further discussed the use cases and limitations of each
ad hoc storage system concerning their compatibility with the ADMIRE applications, and we have described the
software progress since the last deliverable. Finally, we have included new insights in the on-going application
analysis concerning the application’s I/O footprint.

Among others, the next steps will include learning from these insights and applying new techniques to the
ad hoc storage systems to offer even higher I/O performance for HPC applications.

30

A Terminology

• Ad hoc storage system, ephemeral storage system that only exists in a determined period, i.e. during a
job’s execution.

• API, Application Programming Interface, a mechanism that enables an application or service to access a
resource within another application or service. The application or service doing the accessing is called
the client, and the application or service containing the resource is called the server.

• CLI, command line interface.

• DRAM, dynamic random-access memory.

• Ephemeral storage, file systems which are making persistent (surviving across system reboot) but which
are designed to be deployed and destroyed over a limited period of time, from few hours up to few
months.

• In situ data, processing the data where it is originated.

• In transit data, processing the data when it is moved.

• Node-local Storage, ability for a compute server to store persistent data on physically local storage de-
vices.

• PFS, Parallel File System, type of distributed file system supporting a global namespace and spread
across multiple storage servers.

• POSIX, Portable Operating System Interface, family of standardized functions.

• QoS, Quality of Service.

• RDMA, remote direct memory access.

• RPC, remote procedure call.

• Slurm, job submission system widely used.

• SSD, solid state drive.

31

Bibliography

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek Gordon Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system for large-scale machine learning.
In Kimberly Keeton and Timothy Roscoe, editors, 12th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016, pages 265–283. USENIX
Association, 2016.

[2] André Brinkmann, Kathryn Mohror, Weikuan Yu, Philip H. Carns, Toni Cortes, Scott Klasky, Alberto
Miranda, Franz-Josef Pfreundt, Robert B. Ross, and Marc-Andre Vef. Ad hoc file systems for high-
performance computing. J. Comput. Sci. Technol., 35(1):4–26, 2020.

[3] Pieter Hintjens. ZeroMQ: messaging for many applications. " O’Reilly Media, Inc.", 2013.

[4] Joel Lauener and Wojciech Sliwinski. Jacow: How to design & implement a modern communication
middleware based on zeromq. In 16th International Conference on Accelerator and Large Experimental
Physics Control Systems. 8 - 13 Oct, 2017.

[5] Paul Hermann Lensing, Toni Cortes, Jim Hughes, and André Brinkmann. File system scalability with
highly decentralized metadata on independent storage devices. In IEEE/ACM 16th International Sympo-
sium on Cluster, Cloud and Grid Computing (CCGrid), Cartagena, Colombia, May 16-19, pages 366–
375, 2016.

[6] Jonathan Martí, Anna Queralt, Daniel Gasull, Alex Barceló, Juan José Costa, and Toni Cortes. Dataclay:
A distributed data store for effective inter-player data sharing. Journal of Systems and Software, 131:129–
145, 2017.

[7] Frederic Schimmelpfennig, Marc-André Vef, Reza Salkhordeh, Alberto Miranda, Ramon Nou, and André
Brinkmann. Streamlining distributed deep learning i/o with ad hoc file systems. In IEEE International
Conference on Cluster Computing, CLUSTER 2021, Portland, USA, September 07-10, 2021. IEEE, 2021.
(Accepted for publication).

[8] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep learning in tensorflow.
CoRR, abs/1802.05799, 2018.

[9] Marc-Andre Vef, Nafiseh Moti, Tim Süß, Markus Tacke, Tommaso Tocci, Ramon Nou, Alberto Miranda,
Toni Cortes, and André Brinkmann. Gekkofs - A temporary burst buffer file system for HPC applications.
J. Comput. Sci. Technol., 35(1):72–91, 2020.

[10] Marc-Andre Vef, Nafiseh Moti, Tim Süß, Tommaso Tocci, Ramon Nou, Alberto Miranda, Toni Cortes,
and André Brinkmann. Gekkofs - A temporary distributed file system for HPC applications. In IEEE
International Conference on Cluster Computing, CLUSTER 2018, Belfast, UK, September 10-13, 2018,
pages 319–324. IEEE Computer Society, 2018.

[11] Chen Wang, Kathryn Mohror, and Marc Snir. File system semantics requirements of HPC applications.
In Erwin Laure, Stefano Markidis, Ana Lucia Verbanescu, and Jay F. Lofstead, editors, HPDC ’21: The

32

BIBLIOGRAPHY ADMIRE

30th International Symposium on High-Performance Parallel and Distributed Computing, Virtual Event,
Sweden, June 21-25, 2021, pages 19–30. ACM, 2021.

[12] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and Carlos Maltzahn. Ceph: A scalable,
high-performance distributed file system. In Proceedings of the 7th symposium on Operating systems
design and implementation, pages 307–320, 2006.

33

	Introduction
	Ad hoc storage systems
	GekkoFS
	Design summary
	Use cases
	Download and installation
	Running GekkoFS
	Updates
	ADMIRE application compatibility

	dataClay
	Design summary
	Use cases
	Download and installation
	Running dataClay
	Updates
	ADMIRE application compatibility

	Expand
	Design summary
	Use cases
	Download and installation
	Running Expand
	Updates
	ADMIRE application compatibility

	Hercules IMSS (in-memory storage system)
	Design summary
	Use cases
	Download and installation
	Usage
	Updates
	ADMIRE application compatibility

	Applications analysis
	Molecule simulation
	I/O behaviour

	Turbulence simulation

	Conclusion
	Appendix Terminology

