
Introduction to Spack in the ADMIRE Project

Usage of Spack in E4S in ECP
Prof. Sameer Shende
University of Oregon
ParaTools, Inc., ParaTools, SAS

2

Application Development (AD) Software Technology (ST) Hardware and Integration (HI)

Integrated delivery of ECP products
on targeted systems at leading DOE

HPC facilities
6 US HPC vendors

focused on exascale node and system
design; application integration and
software deployment to Facilities

Deliver expanded and vertically
integrated software stack to achieve
full potential of exascale computing

71 unique software products
spanning programming models and

run times,
math libraries,

data and visualization

Develop and enhance the predictive
capability of applications critical to

DOE
24 applications

National security, energy,
Earth systems, economic security,

materials, data
6 Co-Design Centers

Machine learning, graph analytics,
mesh refinement, PDE discretization,

particles, online data analytics

ECP’s holistic approach uses co-design and integration to
achieve exascale computing

Performant mission and science applications at scale

Aggressive
RD&D project

Mission apps; integrated
S/W stack

Deployment to DOE
HPC Facilities

Hardware
technology advances

3

US DOE HPC Roadmap to Exascale Systems

LLNL
IBM/NVIDIA

ANL
IBM BG/Q

ORNL
Cray/AMD/NVIDIA

LBNL
HPE/AMD/NVIDIA

LANL/SNL
HPE/Intel

ANL
Intel/HPE

ORNL
HPE/AMD

LLNL
HPE/AMD

LANL/SNL
Cray/Intel Xeon/KNL

2012-2020 2021-2023

ORNL
IBM/NVIDIA

LLNL
IBM BG/Q

Sequoia

Cori

Trinity

ThetaMira

Titan Summit

ANL
Cray/Intel KNL

LBNL
Cray/Intel Xeon/KNL

Sierra

Exascale
Systems

de
co

m
m

is
si

on
ed Aurora

4

ECP Software Technology (ST)

Develop and deliver high-quality
and robust software products

Guide, and complement, and
integrate with vendor efforts

Prepare SW stack for scalability
with massive on-node parallelism

Extend existing capabilities when
possible, develop new when not

Goal
Build a comprehensive, coherent
software stack that enables
application developers to
productively develop highly
parallel applications
that effectively target
diverse exascale
architectures

5

ECP ST has six technical areas

Programming
Models &
Runtimes

•Enhance and get
ready for exascale
the widely used MPI
and OpenMP
programming models
(hybrid programming
models, deep
memory copies)

•Development of
performance
portability tools (e.g.
Kokkos and Raja)

•Support alternate
models for potential
benefits and risk
mitigation: PGAS
(UPC++/GASNet)
,task-based models
(Legion, PaRSEC)

•Libraries for deep
memory hierarchy
and power
management

10-8

10-4

100

104

 0 100 200 300 400 500 600 700 800 900

R
e
s
id

u
a
l

Iteration

PAPI SDE Recorder: Residual per Iteration (662-bus: 662 x 662 with 2,474 nonzeros)

CG
CGS

BICGSTAB

Development
Tools

• Continued,
multifaceted
capabilities in
portable, open-
source LLVM
compiler
ecosystem to
support expected
ECP
architectures,
including support
for F18

• Performance
analysis tools that
accommodate
new
architectures,
programming
models, e.g.,
PAPI, Tau

Math Libraries
•Linear algebra,
iterative linear
solvers, direct linear
solvers, integrators
and nonlinear
solvers,
optimization, FFTs,
etc

•Performance on
new node
architectures;
extreme strong
scalability

•Advanced
algorithms for multi-
physics, multiscale
simulation and
outer-loop analysis

•Increasing quality,
interoperability,
complementarity of
math libraries

Data and
Visualization

• I/O via the HDF5
API

• Insightful,
memory-efficient
in-situ
visualization and
analysis – Data
reduction via
scientific data
compression

• Checkpoint
restart

NNSA ST
• Open source

NNSA Software
projects

• Projects that
have both
mission role and
open science role

• Major technical
areas: New
programming
abstractions,
math libraries,
data and viz
libraries

• Cover most ST
technology areas

• Subject to the
same planning,
reporting and
review processes

Software
Ecosystem

•Develop features in
Spack necessary to
support all ST
products in E4S,
and the AD projects
that adopt it

•Development of
Spack stacks for
reproducible turnkey
deployment of large
collections of
software

•Optimization and
interoperability of
containers on HPC
systems

•Regular E4S
releases of the ST
software stack and
SDKs with regular
integration of new
ST products

Extreme-scale
Scientific Software
Stack (E4S)

7

E4S: Better quality, documentation, testing, integration, delivery, building & use

Quality Commitment
Community policies, improvement

DocPortal
Single portal to all E4S product info

Portfolio testing
Especially leadership platforms

Curated collection
The end of dependency hell

Quarterly releases
Release 22.11 – November

Build caches
10X build time improvement

Turnkey stack
A new user experience https://e4s.io E4S Strategy Group

US agencies, industry, international

Delivering HPC software to facilities, vendors, agencies, industry, international partners in a brand-new way

https://e4s.io/

8

E4S: Extreme-scale Scientific Software Stack
• E4S is a community effort to provide open-source software packages for developing, deploying and running scientific

applications on HPC platforms.
• E4S has built a comprehensive, coherent software stack that enables application developers to productively develop highly

parallel applications that effectively target diverse exascale architectures.
• E4S provides a curated, Spack based software distribution of 100+ HPC and AI/ML packages (e.g., TAU, TensorFlow, PyTorch).
• With E4S Spack binary build caches, E4S supports both bare-metal and containerized deployment for GPU based platforms.

• X86_64, ppc64le (IBM Power 9), aarch64 (ARM64) with support for GPUs from NVIDIA, AMD, and Intel
• HPC and AI/ML packages are optimized for GPUs and CPUs.

• Container images on DockerHub and E4S website of pre-built binaries of ECP ST products.
• Base images and full featured containers (with GPU support).
• Commercial support for E4S through ParaTools, Inc. for installation, maintaining an issue tracker, and ECP AD engagement.

• https://dashboard.e4s.io https://e4s.io/talks/E4S_Support_Dec22.pdf
• E4S for commercial cloud platforms: AWS image supports multiple MPI implementations and containers with remote desktop

(DCV).
• Intel MPI, NVHPC, MVAPICH2, MPICH, OpenMPI with Fortran, C, C++ compilers

• e4s-cl container launch tool allows binary distribution of applications by substituting MPI in the containerized app with the system
MPI.

• Quarterly releases: E4S 22.11 released on November 14, 2022: https://e4s.io/E4S_22.11.pdf

https://e4s.io

https://dashboard.e4s.io/
https://e4s.io/talks/E4S_Support_Dec22.pdf
https://e4s.io/E4S_22.11.pdf

9

Extreme-scale Scientific Software Stack (E4S)
• E4S: HPC Software Ecosystem – a curated software portfolio

• A Spack-based distribution of software tested for interoperability and portability to multiple architectures with support
for GPUs from NVIDIA, AMD, and Intel in a single distribution

• Available from source, containers, cloud, binary caches

• Leverages and enhances SDK interoperability thrust

• Not a commercial product – an open resource for all

• Oct 2018: E4S 0.1 - 24 full, 24 partial release products

• Jan 2019: E4S 0.2 - 37 full, 10 partial release products

• Nov 2019: E4S 1.0 - 50 full, 5 partial release products

• Feb 2020: E4S 1.1 - 61 full release products

• Nov 2020: E4S 1.2 (aka, 20.10) - 67 full release products

• Feb 2021: E4S 21.02 - 67 full release, 4 partial release

• May 2021: E4S 21.05 - 76 full release products

• Aug 2021: E4S 21.08 - 88 full release products

• Nov 2021: E4S 21.11 - 91 full release products

• Feb 2022: E4S 22.02 – 100 full release products

• May 2022: E4S 22.05 – 101 full release products

• August 2022: E4S 22.08 – 102 full release products

• November 2022: E4S 22.11 – 103 full release products

https://e4s.io

Also include other products .e.g.,
AI: PyTorch, TensorFlow (CUDA, ROCm)
Co-Design: AMReX, Cabana, MFEM

https://e4s.io/

10

E4S Download from https://e4s.io

11

E4S Download from https://e4s.io

12

Download E4S 22.11 GPU Container Images: NVIDIA, AMD, Intel

https://e4s.io

• Separate full featured
Singularity images for 3 GPU
architectures

• GPU full featured images for
– x86_64 (Intel, AMD, NVIDIA)
– ppc64le (NVIDIA)
– aarch64 (NVIDIA) NEW!

• Full featured images available
on Dockerhub

• 100+ products on 3
architectures

13

Download E4S 22.11 GPU Container Images: NVIDIA, AMD, Intel

https://e4s.io

14

E4S 22.11 Base images and Minimal Spack images with MPI

https://e4s.io

15

Minimal Spack base image on Dockerhub

• Create custom
container images

• 1M+ downloads!

16

22.11 Release: 100+ Official Products + dependencies (gcc, x86_64)
GPU runtimes
• AMD (ROCm)

• 5.2.0
• Intel (oneAPI)

• 2022.1.0
• NVIDIA (CUDA)

• 11.4.2
• NVHPC

• 22.9

17

22.11 Release: 100 Official Products + dependencies (gcc, x86_64)
Languages:
• Julia
• Python

AI products with GPU support
• Tensorflow
• Pytorch

3D Visualization
• Paraview
• VisIt
• TAU’s paraprof …

18

E4S Support for CUDA variants on x86_64

19

E4S Support for ROCm variants for MI250X (gfx90a) on x86_64

20

22.11 Release: 100+ Official Products + dependencies (gcc, ppc64le)

GPU runtimes for IBM Power
• CUDA 11.4
• NVHPC 22.9

Languages
• Julia
• Python

AI packages for NVIDIA GPU
• TensorFlow
• PyTorch

21

22.11 Release: 100+ Official Products + dependencies (gcc, ppc64le)
GPU runtimes for IBM Power
• CUDA 11.4
• NVHPC 22.9

Languages
• Julia
• Python

AI packages for NVIDIA GPU
• TensorFlow
• PyTorch

22

E4S Support for CUDA variants on ppc64le

23

22.11 Release: 97 Official Products + dependencies (gcc, aarch64)
GPU runtimes for aarch64
• CUDA 11.7.1
• NVHPC 22.9

Languages
• Julia
• Python

AI packages for NVIDIA GPU
• TensorFlow
• PyTorch

24

22.11 Release: 97 Official Products + dependencies (gcc, aarch64)
GPU runtimes for aarch64
• CUDA 11.7.1
• NVHPC 22.9

Languages
• Julia
• Python

AI packages for NVIDIA GPU
• TensorFlow
• PyTorch

25

E4S Support for CUDA variants on aarch64

Support for A100 and T4 GPUs under aarch64

26

Minimal Spack base image on Dockerhub

• Create custom
container images

• 1M+ downloads!

27

E4S 22.11 Release: GPU support for Docker Containers

• 100+ E4S Products
• Support for GPUs

• x86_64
• ppc64le
• aarch64

% docker pull ecpe4s/e4s-cuda

28

E4S bare-metal installation spack.yaml recipe

• Trilinos variants
• Built with CUDA

29

E4S Build Cache for Spack 0.19.0

• Over 95,000
binaries!

• No need to
recompile from
source code.

30

E4S Base Container Images for x86_64, ppc64le, and aarch64

• Hub.docker.com
• ecpe4s
• Platforms:

• x86_64
• Ppc64le
• aarch64

• GPU runtimes:
• CUDA
• ROCm
• oneAPI

31

E4S 22.11 AWS image: US-West2 (OR)
E4S 22.11 AWS
• Intel oneAPI
• CUDA
• NVHPC
• ROCm
• AWS DCV
• Spack Build

Cache
• ECP: Nalu-Wind
• Trilinos
• OpenFOAM
• ParaView
• TAU
• Docker
• Shifter
• Charliecloud
• E4S Singularity…

32

e4s-cl: A tool to simplify the launch of MPI jobs in E4S containers

https://github.com/E4S-Project/e4s-cl

• E4S containers support replacement of MPI libraries using MPICH ABI compatibility layer and
Wi4MPI [CEA] for OpenMPI replacement.

• Applications binaries built using E4S can be launched with Singularity using MPI library
substitution for efficient inter-node communications.

• e4s-cl is a new tool that simplifies the launch and MPI replacement.
– e4s-cl init --backend [singularity|shifter|docker] --image <file> --source <startup_cmds.sh>
– e4s-cl mpirun -np <N> <command>

• Usage:
. /opt/intel/oneapi/setvars.sh
e4s-cl init --backend singularity --image ~/images/e4s-gpu-x86.sif --source ~/source.sh
cat ~/source.sh

. /spack/share/spack/setup-env.sh
spack load trilinos+cuda cuda_arch=80

e4s-cl mpirun -np 4 ./a.out

Spack Package Manager
https://spack.io

Slide credit: Todd Gamblin,
LLNL

https://spack.io/

34

• Spack automates the build and installation of scientific software

• Packages are parameterized, so that users can easily tweak and tune configuration

• Ease of use of mainstream tools, with flexibility needed for HPC

• In addition to CLI, Spack also:
• Generates (but does not require) modules
• Allows conda/virtualenv-like environments
• Provides many devops features (CI, container generation, more)

$ spack install hdf5@1.10.5
$ spack install hdf5@1.10.5 %clang@6.0
$ spack install hdf5@1.10.5 +threadssafe

$ spack install hdf5@1.10.5 cppflags="-O3 –g3"
$ spack install hdf5@1.10.5 target=haswell
$ spack install hdf5@1.10.5 +mpi ^mpich@3.2

$ git clone https://github.com/spack/spack
$ spack install hdf5

No installation required: clone and go

Simple syntax enables complex installs

github.com/spack/spack

Spack enables Software distribution for HPC

35

HPC simulations rely on icebergs of dependency libraries

sqlite

readline

zlib

cmake

ncurses

openssl

py-setuptools

python

cub

libjpeg-turbo

nasm

py-pyparsingpy-pillow

libxml2

xz

libiconv

pkgconf

automake

autoconf

perl

py-cycler

py-six

py-protobuf

protobuf

libffi

bzip2

gdbm

expatgettext

texinfo

freetype

libpng py-kiwisolver

py-numexpr

py-numpy

ninja

py-onnx

py-typing py-typing-extensionsopenblas

cnpy

diffutils

m4

libtiff py-pytznccl

cuda

py-cython

libsigsegv

conduit

mpich

hdf5

py-setuptools-scm

findutils

py-matplotlib

py-python-dateutil

py-configparser

libtool

tar

cereal

hydrogen

aluminum

hwloc

py-graphviz

py-pandas

py-bottleneck

cudnn

lbann

py-texttable

opencv

71 packages
188 dependency edges

LBANN: Neural Nets for HPC

cmake

ncurses

openssl

diffutils

libiconv

pkgconf

libffi

zlib

hypre

openmpi

openblashdf5

python

sqlite

gettext

gdbm xz

readline

expat

bzip2perl

sundials

libxml2

tar

hwloc

metis

mfem

petsc

superlu-dist

parmetis

MFEM:
Higher-order finite elements

31 packages,
69 dependency edges

py-mdanalysis-mummi

py-setuptools

py-mmtf

py-mock

py-msgpack

py-joblib

py-numpy

py-griddataformats py-networkx

python

py-gsdpy-cython

py-six

py-biopython

libuuid

libyaml

automake

perl

autoconf

py-keras-applications

libevent

openssl

zlibxz

libtool

m4

py-matplotlib

py-cycler

libpng

py-pillow

freetype

py-pyparsing

py-python-dateutil

py-kiwisolver

pkgconf

pcre

libiconv

cudnn

gettext

ncurses

libxml2

tar

bzip2

libzmq

libsodium

redis

py-pyyaml

py-pycparser

flux-sched

flux-core

boost

yaml-cpp

py-setuptools-scm cuda

libbsd

py-keras-preprocessing czmq

faiss

swig

openblas

mummi-macro

py-scipy

mummi

databroker

cmake

py-scikit-learn

py-keras talass

py-jsonschema

py-vcversioner

libsigsegv

lua

unzip

readline

py-cffi

libffiexpat

lua-luaposix

gdbm

numactl

openmpi

hwlocjanssonlz4

libjpeg-turbo

util-macros

py-decorator

sqlite

fftw

diffutils

py-theano

libpciaccess

nasm

gromacs

98 packages
248 dependency edges

MuMMI: Cancer/drug interaction modeling
Integrates MD , HPC scheduling, ML

36

ECP’s E4S stack is even larger than these codes

– Red boxes are the packages in it (about 100)
– Blue boxes are what else you need to build it (about 600)
– It’s infeasible to build and integrate all of this manually

37

•1:1 relationship between source code and binary (per platform)
– Good for reproducibility (e.g., Debian)
– Bad for performance optimization

•Binaries should be as portable as possible
– What most distributions do
– Again, bad for performance

•Toolchain is the same across the ecosystem
– One compiler, one set of runtime libraries
– Or, no compiler (for interpreted languages)

Some fairly common (but questionable) assumptions
made by package managers (conda, pip, apt, etc.)

Outside these boundaries, users are typically on their own

38

• Code is typically distributed as source
– With exception of vendor libraries, compilers

• Often build many variants of the same package
– Developers’ builds may be very different
– Many first-time builds when machines are new

• Code is optimized for the processor and GPU
– Must make effective use of the hardware
– Can make 10-100x perf difference

• Rely heavily on system packages
– Need to use optimized libraries that come with machines
– Need to use host GPU libraries and network

• Multi-language
– C, C++, Fortran, Python, others

all in the same ecosystem

High Performance Computing (HPC)
violates many of these assumptions

Oak Ridge National
Lab

Power9 / NVIDIA

Summit

Lawrence
Berkeley National

Lab
AMD Zen / NVIDIA

NERSC-9
Perlmutter

Oak Ridge National
Lab

AMD Zen / Radeon

Lawrence Livermore
National Lab

AMD Zen / Radeon

Argonne National Lab
Intel Xeon / Xe

Aurora

Current

Upcoming

Some Supercomputers

RIKEN
Fujitsu/ARM a64fx

Fugaku

39

• Containers provide a great way to reproduce and distribute an
already-built software stack

• Someone needs to build the container!
– This isn’t trivial
– Containerized applications still have hundreds of dependencies

• Using the OS package manager inside a container is insufficient
– Most binaries are built unoptimized
– Generic binaries, not optimized for specific architectures

• HPC containers may need to be rebuilt to support many
different hosts, anyway.
– Not clear that we can ever build one container for all facilities
– Containers likely won’t solve the N-platforms problem in HPC

What about containers?

We need something more flexible to build the containers

40

Spack sustains the HPC software ecosystem
with the help of its many contributors

6,400+ software packages
Over 1,000 contributors

Nearly 6,000 monthly active users
(per documentation site)

Monthly active users

Most package contributions are not from DOE!

41

• Each expression is a spec for a particular configuration
– Each clause adds a constraint to the spec
– Constraints are optional – specify only what you need.
– Customize install on the command line!

• Spec syntax is recursive
– Full control over the combinatorial build space

Spack provides a spec syntax to describe customized installations

$ spack install mpileaks unconstrained
$ spack install mpileaks@3.3 @ custom version
$ spack install mpileaks@3.3 %gcc@4.7.3 % custom compiler
$ spack install mpileaks@3.3 %gcc@4.7.3 +threads +/- build option
$ spack install mpileaks@3.3 cppflags="-O3 –g3" set compiler flags
$ spack install mpileaks@3.3 target=zen2 set target microarchitecture
$ spack install mpileaks@3.3 ^mpich@3.2 %gcc@4.9.3 ^ dependency information

42

Spack packages are templates
They use a simple Python DSL to define how to build

Metadata at the class level

Versions

Install logic
in instance methods

Dependencies
(same spec syntax)

Not shown: patches, resources, conflicts,
other directives.

from spack import *

class Kripke(CMakePackage):
"""Kripke is a simple, scalable, 3D Sn deterministic particle

transport proxy/mini app.
"""

homepage = "https://computation.llnl.gov/projects/co-design/kripke"
url = "https://computation.llnl.gov/projects/co-design/download/kripke-openmp-1.1.tar.gz"

version(‘1.2.3’, sha256='3f7f2eef0d1ba5825780d626741eb0b3f026a096048d7ec4794d2a7dfbe2b8a6’)
version(‘1.2.2’, sha256='eaf9ddf562416974157b34d00c3a1c880fc5296fce2aa2efa039a86e0976f3a3’)
version('1.1’, sha256='232d74072fc7b848fa2adc8a1bc839ae8fb5f96d50224186601f55554a25f64a’)

variant('mpi', default=True, description='Build with MPI.’)
variant('openmp', default=True, description='Build with OpenMP enabled.’)

depends_on('mpi', when='+mpi’)
depends_on('cmake@3.0:', type='build’)

def cmake_args(self):
return [

'-DENABLE_OPENMP=%s’ % ('+openmp’ in self.spec),
'-DENABLE_MPI=%s' % ('+mpi’ in self.spec),

]

def install(self, spec, prefix):
Kripke does not provide install target, so we have to copy
things into place.
mkdirp(prefix.bin)
install('../spack-build/kripke', prefix.bin)

Base package
(CMake support)

Variants (build options)

Don’t typically need install() for
CMakePackage, but we can work
around codes that don’t have it.

Concretization fills in missing configuration details
when the user is not explicit.

mpileaks ^callpath@1.0+debug ^libelf@0.8.11 User input: abstract spec with some constraints

Concrete spec is fully constrained
and can be passed to install

mpileaks@2.3
%gcc@4.7.3
=linux-ppc64

mpich@3.0.4
%gcc@4.7.3
=linux-ppc64

callpath@1.0
%gcc@a4.7.3+debug

=linux-ppc64

dyninst@8.1.2
%gcc@4.7.3
=linux-ppc64

libelf@0.8.11
%gcc@4.7.3
=linux-ppc64

libdwarf@20130729
%gcc@4.7.3
=linux-ppc64

Abstract, normalized spec
with some dependencies

mpileaks

mpi

callpath@1.0
+debug

dyninst

libelf@0.8.11

libdwarf

N
orm

alize

Concretize Store

spec:
- mpileaks:

arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies:
adept-utils: kszrtkpbzac3ss2ixcjkcorlaybnptp4
callpath: bah5f4h4d2n47mgycej2mtrnrivvxy77
mpich: aa4ar6ifj23yijqmdabeakpejcli72t3

hash: 33hjjhxi7p6gyzn5ptgyes7sghyprujh
variants: {}
version: '1.0'

- adept-utils:
arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies:
boost: teesjv7ehpe5ksspjim5dk43a7qnowlq
mpich: aa4ar6ifj23yijqmdabeakpejcli72t3

hash: kszrtkpbzac3ss2ixcjkcorlaybnptp4
variants: {}
version: 1.0.1

- boost:
arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies: {}
hash: teesjv7ehpe5ksspjim5dk43a7qnowlq
variants: {}
version: 1.59.0

...

spec.yaml

Detailed provenance stored
with installed package

opt
!"" spack

#"" linux-rhel7-skylake
$!"" gcc-8.3.0
$ #"" mpileaks-1.0-hc4sm4vuzpm4znmvrfzri4ow2mkphe2e
$ #"" callpath-1.0.4-daqqpssxb6qbfrztsezkmhus3xoflbsy
$ #"" openmpi-4.1.4-u64v26igxvxyn23hysmklfums6tgjv5r
$ #"" dyninst-12.1.0-u64v26igxvxyn23hysmklfums6tgjv5r
$ #"" libdwarf-20180129-u5eawkvaoc7vonabe6nndkcfwuv233cj
$!"" libelf-0.8.13-x46q4wm46ay4pltriijbgizxjrhbaka6

§ Each unique dependency graph is a
unique configuration.

§ Each configuration in a unique directory.
— Multiple configurations of the same

package can coexist.

§ Hash of entire directed acyclic graph
(DAG) is appended to each prefix.

§ Installed packages automatically find
dependencies
— Spack embeds RPATHs in binaries.
— No need to use modules or set

LD_LIBRARY_PATH
— Things work the way you built them

Spack handles combinatorial software complexity

mpileaks

mpi

callpath dyninst

libdwarf

libelf

Installation Layout

Dependency DAG

opt
!"" spack

#"" linux-rhel7-skylake
$!"" gcc-8.3.0
$ #"" mpileaks-1.0-hc4sm4vuzpm4znmvrfzri4ow2mkphe2e
$ #"" callpath-1.0.4-daqqpssxb6qbfrztsezkmhus3xoflbsy
$ #"" openmpi-4.1.4-u64v26igxvxyn23hysmklfums6tgjv5r
$ #"" dyninst-12.1.0-u64v26igxvxyn23hysmklfums6tgjv5r
$ #"" libdwarf-20180129-u5eawkvaoc7vonabe6nndkcfwuv233cj
$!"" libelf-0.8.13-x46q4wm46ay4pltriijbgizxjrhbaka6

Hash

45

• spack.yaml describes project requirements

• spack.lock describes exactly what versions/configurations were
installed, allows them to be reproduced.

• Can also be used to maintain configuration together with Spack
packages.
– E.g., versioning your own local software stack with consistent

compilers/MPI implementations
– Allows developers and site support engineers to easily version

Spack configurations in a repository

Spack environments enable users to build customized stacks
from an abstract description

Simple spack.yaml file

install build
project

spack.yaml file with
names of required

dependencies

Lockfile describes
exact versions installed

Dependency
packages

Concrete spack.lock file (generated)

46

Spack can generate multi-stage container build recipes

spack containerize

▪ Any Spack environment can be
bundled into a container image
— Op$onal container sec$on allows

finer-grained customiza$on

▪ Generated Dockerfile uses mulN-stage
builds to minimize size of final image
— Strips binaries
— Removes unneeded build deps with

spack gc

▪ Can also generate Singularity recipes

47

• Builds on Spack environments
– Support auto-generating GitLab CI jobs
– Can run in a Kube cluster or on bare metal runners at an HPC site
– Sends progress to CDash

Spack has GitLab CI integration to automate
package build pipelines

48

class Libsigsegv(AutotoolsPackage, GNUMirrorPackage):
"""GNU libsigsegv is a library for handling page faults in user mode."""

... spack package contents ...

extra_install_tests = ‘tests/.libs’

def test(self):
data_dir = self.test_suite.current_test_data_dir
smoke_test_c = data_dir.join(‘smoke_test.c’)

self.run_test(
'cc’, [

'-I%s' % self.prefix.include,
'-L%s' % self.prefix.lib, '-lsigsegv’,
smoke_test_c,
'-o', 'smoke_test'

]
purpose='check linking’)

self.run_test(
‘smoke_test’, [], data_dir.join('smoke_test.out’),
purpose=‘run built smoke test’)

self.run_test('sigsegv1': ['Test passed’], purpose='check sigsegv1 output’)
self.run_test('sigsegv2': ['Test passed’], purpose='check sigsegv2 output’)

spack test: write tests directly in Spack packages,
so that they can evolve with the software

Tests are part of a regular Spack recipe class

Easily save source code from the package

User just defines a test() method

Retrieve saved source.
Link a simple executable.

Spack ensures that cc is a compatible compiler

Run the built smoke test and verify output

Run programs installed with package

49

• Spack has has had compiler
detection for a while
– Finds compilers in your PATH
– Registers them for use

• We can find any package now
– Package defines:

• possible command names
• how to query the command

– Spack searches for known
commands and adds them to
configuration

• Easily enable rapid setup of tools in
an environment

spack external find (new in v0.15, updated for 0.16)

Logic for finding external
installations in package.py

packages.yamlconfiguration

50

• Developer features so far have focused on
single packages (spack dev-build, etc.)

• New spack develop feature enables
development environments
– Work on a code
– Develop multiple packages from its

dependencies
– Easily rebuild with changes

• Builds on spack environments
– Required changes to the installation model for

dev packages
– dev packages don’t change paths with

configuration changes
– Allows devs to iterate on builds quickly

spack develop lets developers work on many packages at once

51

•Major new features:
1. --reuse enabled by default

• Reuse installed packages and build caches
• Use spack install --fresh to get the old behavior

2. Finer-grained spec hash + provenance
3. Better error messages
4. Unify when possible in environments
5. Cray manifest support
6. Windows support
7. New binary format + hardened package signing
8. Bootstrap mirror generation (for air gaps)
9. Makefile generation
10. Conditional variant values and sticky variants

Spack v0.18.0 was released at ISC in early June!

github.com/spack/spack

377 contributors to packages!
85 contributors to core!

52

Concretization is at the core of Spack!

• new versions
• new dependencies
• new constraints

package.py repository

local preferences config
packages.yaml

yaml

local environment config spack.yamlyaml

admins,
users

users

Command line constraints
spack install hdf5@1.12.0 +debug

Contributors

default config
packages.yaml

yamlspack
developers

users

concretizer

Concrete spec is
fully constrained
and can be built.

cmake

ncurses

openssl

diffutils

libiconv

pkgconf

libffi

zlib

hypre

openmpi

openblashdf5

python

sqlite

gettext

gdbm xz

readline

expat

bzip2perl

sundials

libxml2

tar

hwloc

metis

mfem

petsc

superlu-dist

parmetis

This problem is
NP-hard!

53

Crash course in ASP

• ASP syntax is derived from Prolog

• Basic piece of a program is a term

• Terms can easily represent any data
structure, e.g. this is a graph with:
– 2 nodes, one with a variant value

– 1 dependency edge

• Terms followed by '.' are called facts

– Facts say "this is true!"

enable_some_feature.

node("lammps").

node("cuda").

variant_value("lammps", "cuda", "False").

depends_on("lammps", "cuda", "link").

54

Crash course in ASP

• ASP programs also have rules.
– Rules can derive additional facts.

• :- can be read as "if"
– The head (left side) is true

– If the body (right side) is true

• Comma in the body is like "and"
– Writing same head twice is like "or"

• Capital words are variables
– Rules are instantiated with all possible substitutions

for variables.

node(Dependency) :- node(Package), depends_on(Package, Dependency, Type).

node("cuda") node("lammps").
depends_on("lammps", "cuda", "link").

55

Crash course in ASP

• Constraints say what cannot happen

• Choice rules give the solver freedom to choose from possible options:

path(A, B) :- depends_on(A, B).
path(A, C) :- path(A, B), depends_on(B, C).

:- path(A, B), path(B, A). % this constraint says "no cycles"

% if a package is in the graph, solver must choose exactly one version
% out of that package's possible versions
1 { version(V) : possible_version(Package, V) } 1 :- node(Package).

% if a package is in the graph, solver must choose exactly one version
% out of that package's possible versions
1 { version(V) : possible_version(Package, V) } 1 :- node(Package).

% if a package is in the graph, solver must choose exactly one version
% out of that package's possible versions
1 { version(V) : possible_version(Package, V) } 1 :- node(Package).

% if a package is in the graph, solver must choose exactly one version
% out of that package's possible versions
1 { version(V) : possible_version(Package, V) } 1 :- node(Package).

% if a package is in the graph, solver must choose exactly one version
% out of that package's possible versions
1 { version(V) : possible_version(Package, V) } 1 :- node(Package).

56

ASP searches for stable models of the input program

• Stable models are also called answer sets

• A stable model (loosely) is a set of true atoms that can be
deduced from the inputs, where every rule is idempotent.
– Similar to fixpoints

– Put more simply: a set of atoms where all your rules are true!

• Unlike Prolog:
– Stable models contain everything that can be derived (vs. just querying values)

– ASP is guaranteed to complete!

57

• Used Clingo, the Potassco grounder/solver package

• ASP program has 2 parts:
1. Large list of facts generated from package recipes (problem instance)
• 60k+ facts is typical – includes dependencies, options, etc.

2. Small logic program (~700 lines of ASP code)

• Algorithm (the part we write) is conceptually simpler:
– Generate facts for all possible dependencies
– Send facts and our logic program to the solver
– Rebuild a DAG from the results

Spack’s concretizer is now implemented in ASP

Some facts for HDF5 package

58

cuda is a variant (build option)

cuda_arch is only present
if cuda is enabled

dependency on cuda, but only
if cuda is enabled

Spack DSL allows declarative specification of complex constraints

constraints on cuda version

compiler support for x86_64
and ppc64le

CudaPackage: a mix-in for packages that use CUDA

There is a lot of expressivity in this DSL.

59

• Hash matches are very
sensitive to small changes

• In many cases, a satisfying
cached or already installed spec
can be missed

• Nix, Spack, Guix, Conan, and
others reuse this way

Many packaging systems reuse builds via metadata hashes

mpileaks

mpi

callpath dyninst

libdwarf

libelf

Package
cache

6zvh4ueem6f5yrcfugh67k2hrtxbgbcs

74mwnxgn6nujehpyyalhwizwojwn5zga

4xxvh5ldm7gm32ngtixcm2odaer3cvvb

k2yumgxwq6ijubivfpbjpmrrbzyqcoot

qo2af23r2npatxdtna3fmwkeennywixp

cwx4qwk4bkamf4gjrglmxfu3bhasyt74

1. Resolve metadata

2. Create per-node hashes

3. Query for exact hash match

??

60

We can be more aggressive about reusing packages.

• First, we need to tell the solver about all the installed packages!
• Add constraints for all installed packages, with their hash as the associated ID:

61

Telling the solver to minimize builds is surprisingly simple:
it's just the impose half of a generalized condition.

1. Allow the solver to choose a hash for any package:

2. Choosing a hash means we impose its constraints:

3. Define a build as something without a hash:

4. Minimize builds!

62

With and without reuse optimization

Pure hash-based reuse: all misses With --reuse: 16 packages were reusable

Note the bifurcated
optimization criteria

63

• Cumulative distribution
of setup and solve times

• Hypothesis: we don’t
see big combinatorial
blow-up b/c we're strict
about dependency
hashes

• Next: try mixed ABI, but
prefer "pure" source-
built dependencies

So far, it looks like we can handle very large problem sizes
with the reusing solver

Most of the time is spent in setup
(reading data in Python – can be sped up w/caching)

Even with 63k packages in a repo,
nearly all package solves take < 10 sec

64

Spack Community💁💁💁💁💁💁💁💁💁💁💁💁💁💁💁 💁

What does the Spack project look like?

Core tool (CLI + Solver)

Package Recipes

xSDKLLNL
stackE4S

Vis
SDK . . .

Infrastructure

External Stacks AppAWS

65

CI has made Spack builds much more reliable!

spack ci

Spack Contribu/ons
on GitHub
(over 1,000 contributors)

spack.yaml
configurations

(E4S, SDKs, AWS,
others)

gitlab.spack.io

GitLab CI builds (changed) packages
• On every pull request
• On every release branch

x86_64 and aarch64
pipelines in AWS

ppc64le, GPU pipelines
at

U. Oregon

Pipelines at LLNL
(Cray PE soon)

Do users really need to build from source?

66

With v0.18, Spack has a public binary cache

•Over 3,000 builds in the cache so far:
– Amazon Linux 2 x86_64_v4
– Amazon Linux 2 aarch64
– Amazon Linux 2 graviton2
– Ubuntu 18.04 x86_64

latest v0.18.x release binaries
spack mirror add https://binaries.spack.io/releases/v0.18

rolling release: bleeding edge binaries
spack mirror add https://binaries.spack.io/develop

Do we trust binaries?

67

We aim to lower the burden of maintaining a binary distribution
and make it easy to mix source builds with binaries.

Parameterized recipe
per package

(Same recipe evolves for all targets)
Build farm / CI

Optimized
Graviton2 binaries

Optimized
Skylake binaries

Optimized
GPU binaries

Many
software stacks

Built for specific:
Systems

Compilers
OS’s
MPIs
etc.

Spack

Traditional
package manager

Recipe per
package configuration

(need rewrites for new systems)

Portable (unoptimized)
x86_64 binaries

One software stack
upgraded over timeBuild farm

Users/developers can also build directly from source

68

https://binaries.spack.io

Public, signed binaries in
CloudFront distribution

Our infrastructure enables us to sustainably manage a
binary distribution

• Moves bulk of binary maintenance upstream, onto PRs
– Production binaries never reuse binaries from untrusted environment

develop releases/v0.18 …

Internal per-PR build caches

Untrusted S3 buckets

github/pr-28469 …

Contributors submit
package changes
• Iterate on builds in PR
• Caches prevent

unnecessary rebuilds

Maintainers review PRs
• Verify PR build succeeded
• Review package code
• Merge to develop

Rebuild and Sign
• Published binaries built

ONLY from approved code
• Protected signing runners
• Ephemeral keys

github/pr-28468

69

▪ Our codes use a lot of external software
— Most packages are external open source
— Many LLNL packages are also open source and developed in the open

▪ We cannot replace all these OSS components with our own
— How do we vet all these components?

▪ Key question: Who/what do you trust to validate the components?
— Current processes are not scalable and not automated!

Why should we care about this for our HPC codes?

c2c

cmake

libxscrnsaver

util-macros

scrnsaverproto

libxext

pkgconf

xextproto

libx11

libiconv

gdbm

readline

ncurses

openssl

overlink

silo

zlib

hdf5openmpiPmw

python

renderproto

font-util

mkfontdirbdftopcf

mkfontscale

automake

autoconf

physicsutils

freetype

bzip2libpng

tcl

Cheetah

libxft

fontconfig

libxrender

perlxtrans libpthread-stubs

gperf

libxml2

boost

axom

conduit

rajaumpirelapack

GA

m4

libsigsegv

memusage

diffutils

chai

sgeos_xml

bdivxml

samsa

Leos

xcb-proto

xzxproto

cub

fontsproto

libxfont

unzip hypre

caliper

hpdfscallop

vtkh

vtkm

selene

tdf

nuclear

ascent

libfontenc

libffi

SAMRAI matprop

timers

opclient

py-setuptools

py-numpy

openblas

libxau

rng

expat

sqlite

gettext

kbproto

cretin

ASCMemorycnmem

geodyn_mat

py-scipy gsl

hwloc

Teton

libxcb

libxdmcp

inputproto

tar

ares

py-nose

lunum Laser ASCLasertk

lua

miranda mslib gperftools

DSD

LLNL ARES

Types of Packages

External, Open SourceLLNL, Open SourceLLNL, Internal

30 12 71

70

We will continue scaling this infrastructure out!

•We are doing 40k builds per week!
– There are lots of optimizations left to do on the build pipelines
– We think we can eventually scale to all 6,400 Spack packages

•Goal: make source builds unnecessary for most users
– Source builds are optimized for x86_64_v4 (avx512), graviton, etc.
– Source builds will still be seamless – key for reproducibility
– Use spack develop to tweak (almost) any binary you can install

•We will keep scaling OS, compiler, and arch support
– Current crop of compilers and OS’s is a bit old – expect a refresh
– Cray PE build coming soon!

•Amazon Linux 2 builds work on AWS ParallelCluster
NOW!

Build stats at
https://stats.e4s.io

Open Source
Contribu/ons

A Notional Secure Pipeline

• We are working to establish a set of guidelines for supply chain integrity
– Labs are trending towards GitLab, Spack for HPC
– Standard container formats can help with scanning
– Standard Software Bill of Materials (SBOM) format could help sites

cross-validate codes

• Spack can help to standardize some of this.

Tarballs, other sources

Git commits

Binary
Packages

Sign

Verify

Deploy

Container
Build

Container
Images

Build

VerifySign

Scan Scan

Spack has 6,500 packages,
with many updates per day.

72

Spack’s long-term strategy is based around
broad adoption and collaboration

• Not sustainable without a community
– Broad adoption incentivizes contributors
– Cloud resources and automation absolutely necessary

• Preserves build knowledge in a cross-platform,
reusable way
– Minimize rewriting recipes when porting

• CI ensures builds continue to work as packages
evolve
– Keep packages flexible but verify key configurations

• Growing contributor base and automation are
the top priorities
– 377 contributors to 0.18 release!

Spack
Community

73

E4S Summary
•What E4S isWhat E4S is not
Extensible, open architecture software ecosystem accepting
contributions from US and international teams.
Framework for collaborative open-source product
integration.

A full collection of compatible software capabilities and
A manifest of a la carte selectable software capabilities.

Vehicle for delivering high-quality reusable software products
in collaboration with others.

The conduit for future leading edge HPC software targeting
scalable next-generation computing platforms.
A hierarchical software framework to enhance (via SDKs)
software interoperability and quality expectations.

A closed system taking contributions only from DOE
software development teams.

A monolithic, take-it-or-leave-it software behemoth.

A commercial product.

A simple packaging of existing software.

74

Vision for E4S Now and in the Future

• E4S has emerged as a new top-level component in the DOE HPC community, enabling
fundamentally new relationships

• E4S has similar potential for new interactions with other US agencies, US industry and international
collaborators. NSF and UK are examples

• The E4S portfolio can expand to include new domains (ML/AI), lower—level components (OS), and
more.

• E4S can provide better (increased quality), faster (timely delivery of leading-edge capabilities) and
cheaper (assisting product teams)

75

Performance Research Laboratory, University of Oregon, Eugene

www.uoregon.edu

http://www.uoregon.edu/

76

• US Department of Energy (DOE)
– ANL
– Office of Science contracts, ECP
– SciDAC, LBL contracts
– LLNL-LANL-SNL ASC/NNSA contract
– Battelle, PNNL and ORNL contract

• EU: ADMIRE EuroHPC Project

• Department of Defense (DoD)
– PETTT, HPCMP

• National Science Foundation (NSF)
– SI2-SSI, Glassbox

• NASA

• CEA, France

• Industry: AMD, ARM, Intel, NVIDIA, IBM

• Partners:
–University of Oregon
–The Ohio State University
–ParaTools, Inc.
–University of Tennessee, Knoxville
–T.U. Dresden, GWT
–Jülich Supercomputing Center

Support Acknowledgements

77

Thank you: ADMIRE

The ADMIRE project has received funding from the European High-Performance Computing Joint
Undertaking (JU) under grant agreement No 956748. The JU receives support from the European
Union’s Horizon 2020 research and innovation programme and Spain, Germany, France, Italy,
Poland, and Sweden.

https://admire-eurohpc.eu

78

Thank you
This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of
the U.S. Department of Energy’s Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software, applications, and
hardware technology, to support the nation’s exascale computing imperative.

Thank you to all collaborators in the ECP and broader computational science communities. The
work discussed in this presentation represents creative contributions of many people who are
passionately working toward next-generation computational science.

https://www.exascaleproject.org

79

80

Thank you
This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of
the U.S. Department of Energy’s Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software, applications, and
hardware technology, to support the nation’s exascale computing imperative.

Thank you to all collaborators in the ECP and broader computational science communities. The
work discussed in this presentation represents creative contributions of many people who are
passionately working toward next-generation computational science.

https://www.exascaleproject.org

