
ADMIRE EuroHPC Project 13/02/2023

1

ADMIRE

Adaptive Multi-tier Intelligent
Data Manager for Exascale is a
EuroHPC project aiming at
addressing upcoming I/O
challenges in Exascale systems. It
gathers thirteen European
partners to pioneer new ways of
doing HPC I/Os.

Objective

The main objective of the
ADMIRE project is the creation of
an active I/O stack that
dynamically adjusts computation
and storage requirements
through intelligent global
coordination, elasticity of
computation and I/O, and the
scheduling of storage resources
along all levels of the storage
hierarchy, while offering quality-
of-service (QoS), energy
efficiency, and resilience for
accessing extremely large data
sets in very heterogeneous
computing and storage
environments.

Acknowledgement

This project has received funding
from the European Union’s
Horizon 2020 under Grant
Agreement number: 956748-
ADMIRE-H2020-JTI-
EuroHPC-2019-1.

ON MAKING HPC STORAGE
SYSTEMS MALLEABLE

Designing dynamic and reactive distributed storage systems

I/O Challenges in HPC

In High-Performance Computing (HPC) data movements
are one of the biggest challenges. Indeed, large
computation is necessarily leading to large datasets.

Current HPC workflows favor a feed-forward way of
launching programs, loading their dataset, and then storing
the result in persistent storage for later post-processing. This
is done by separate jobs without any form of collaboration.
Moreover, the I/O backend is so critical that it generally runs
separated from the machine in a service island, being
dimensioned for the whole system. What if the I/O
subsystem and the application started collaborating to
perform better? This is the question ADMIRE tries to
respond to. This EUROHPC project has taken the ambitious
goal of experimenting with a holistic I/O management
approach. In the project’s framework, it translates into a
feedback loop and careful job and service reconfiguration to
handle I/O resources globally in the computing center. This
should translate to a lower dependency on the I/O backend
reconfiguring nodes to act as an ad-hoc file-system —
reducing the need for large and expensive I/O backplanes. In
this context, being able to precisely describe what is taking
place on the system is crucial, and to this matter, a new real-
time monitoring system was developed by project partners.

ADMIRE EuroHPC Project 13/02/2023

2

Malleable ad-hoc
storage systems

ADMIRE intends to significantly
extend exist ing ad -hoc stora ge
systems, making them malleable.

Storage systems, e.g., file systems, are generally
available for users to store their data. In the
context of HPC, large parallel file systems, such
as Lustre or GPFS, are used for long-term data
storage. To reduce application interference, so-
called burst buffers are used, offering a temporary
storage environment to accelerate the I/O
performance of applications.

The advantages

Fig I. Illustration of combining the I/O capabilities of
three nodes by using a burst buffer file system

Nowadays, compute nodes offer node-local
storage, e.g., SSDs, that can be used as burst
buffers. Unfortunately, they often remain
unused because they only provide local storage
which is not useful for distributed applications
that rely on a distributed namespace. Burst
buffer file systems, such as GekkoFS, BurstFS,
dataClay, or Hercules, fill that niche and can
combine node-local burst buffers into a single
global namespace. They further accumulate the
I/O performances and capacities of the SSDs.

Because these kinds of burst buffer file systems
are often collocated with compute nodes, they
are usually deployed ad-hoc. Such file systems are
also called ad hoc file systems, and their ability
to be quickly deployed and destroyed in a job
context is particularly important not to waste
precious computational resources. Because

node node node
Application

these ad hoc burst buffer file systems are often
accessed by a single application, they can
hea v i l y opt imize for an app l i ca t ion's
requirements. Further, this allows applications
to run in isolation with regards to the I/O,
which is only accessed to import input datasets
(stage-in) for the application’s used ad-hoc file
system or to export its results for long-term
storage to the parallel file system (stage-out).

If possible, such a file system could even relax
its consistency guarantees to offer higher
performance and scalability than the parallel file
system can provide.

The challenges and solutions for
usability and malleability

Fig II. ADMIRE’s proposal for a malleable HPC stack

Typically, ad-hoc file systems are user-space file
systems allowing them to be used by any non-
privileged user. What is more, many support the
standard POSIX file system interface so that an
application does not need to be modified.
However, before an application can use the ad-
hoc file system, users need to launch the system
as well as stage-in input data before the
application starts, and stage-out any non-
intermediate output data once the application
finishes.

The ADMIRE framework makes this process
entirely transparent to the user, who only needs
to hint stage-in and stage-out paths when

Batch
scheduler

Management
component

Ad-hoc file system
instance

Parallel
file system

Monitoring
component

Decision
component

Management &
data transfer
orchestration

Monitoring

System
state

Data transfer
orchestration Monitoring

Malleability & data
transfer requests

User hints

Actual data
transfer

ADMIRE EuroHPC Project 13/02/2023

3

submitting a batch job, while the ADMIRE framework
manages the ad-hoc file systems and the corresponding data
transfer. This topic will be briefly revisited in a later blog post.

Fig III. GekkoFS’s extended architecture

The challenges are considerably larger for enabling file system
malleability, that is, molding it to the application’s and HPC
system’s requirements. Although users can offer hints to the
storage system w.r.t. the application’s I/O requirements, the
state of the system is out of their reach. As a result, the ad-hoc
storage systems are integrated into the ADMIRE framework
such that it can transparently trigger the ad-hoc file system’s
malleable options when required.

What’s next…

To support any actions decided by the ADMIRE framework,
the file systems are currently significantly extended, as
outlined on the right. Further, on-going tasks include trace
analysis of the I/O behavior of HPC applications to optimize
them as best as possible.

Possible
malleable
options

Several malleable options are
considered for the ad-hoc storage
systems. The following presents a
small outline of them.

Dynamic sizing of
storage resources

Depending on the state of the HPC
system, usage of the parallel file
system, and an application’s I/O
requirements in different phases, an
ad-hoc file system’s size, i.e., its
number of used storage nodes, can
be dynamically increased and
decreased. This allows general
malleability and bandwidth control.

Data distribution

Generally, ad-hoc file systems try to
use all I/O nodes as efficiently as
possible by including all of them in
an I/O operation. However, this is
not necessary in some cases, e.g.,
when processes only read the data
they have written. Therefore, our
ad-hoc file systems offer several
data distribution policies.

Quality-of-Service and
consistency protocols

The ad-hoc file systems support
QoS mechanisms for more fine-
grained control to manage the
used computational and storage
resources. Further, they can be
configured to relax consistency
guarantees, decreasing file system
communication and, as a result,
increasing I/O performance.

GekkoFS proxy

Mercury RPC Client

Application

libc

syscall_intercept

File Map

Mercury IPC Client

GekkoFS
client

data stage-in/
stage-out

Parallel Bulk
Transfer (RDMA) RPC

Parallel File System

compute node

GekkoFS daemon

Mercury RPC Server

RocksDB Mercury
IPC Server

No
de

-lo
ca

l F
S

(S
CM

, S
SD

, H
DD

)

GekkoFS daemon

Mercury RPC Server

RocksDB Mercury
IPC Server

Node-local FS
(SCM, SSD, HDD)

Mercury IPC Server

✉ admire_eurohpc@uc3m.es

Admire EURO-HPC Project

@admire_eurohpc

https://www.linkedin.com/in/admire-euro-hpc-project-66492120b/
https://twitter.com/admire_eurohpc
mailto:admire_eurohpc@uc3m.es

	ADMIRE
	Objective
	Acknowledgement
	I/O Challenges in HPC
	Malleable ad-hoc storage systems
	The advantages
	The challenges and solutions for usability and malleability
	What’s next…
	Possible malleable options
	Dynamic sizing of storage resources
	Data distribution
	Quality-of-Service and consistency protocols

