

Closing the loop: from Observation to Action

Performance monitoring and observation is a requirement in the complex IT systems we are
building nowaday. Exascale systems are digital factories operating with millions of cores and
discrete components. As any factory, these systems are instrumented and monitored.

Performance observation is facing three main challenges:

- Operating at scale, many solutions, based on Nagios and even more modern
telemetric clients (telegraph, collectd) perform efficiently up to a threshold before finally
stumbling over the harsh reality of the 1:N pattern. Fundamentally this is a topological
issue with too many nodes trying to establish a connection to a single node.

- Operating in real-time, Monitoring is not exactly a synonym of Profiling. Profiles tend
to be built post-mortem. As an example, the Darshan tool is great at producing a
detailed I/O profile of an application, but only after the application has terminated. The
ability to provide live observations remains a temporal limitation, due to the difficulty to
summarize in time the right volume of information and to display exploitable results.

- Co-operating, this last point is not a conceptual limitation but an operational one. It
has been observed that I/O solutions tend to overlook information related to the
compute nodes, and that monitoring solutions focused on CPU are just ignoring the
very notion of I/O.

Operating at scale

ADMIRE monitoring infrastructure is using Prometheus as a central point of information.
Prometheus is not scaling to the number of nodes we are targeting in EuroHPC. Here comes
LimitLESS from UC3M.
ADMIRE has its own monitoring client in charge of extracting key metrics out of the system.
The client is based on the well known TAU performance software. To ensure the scalability of
the monitoring we rely on LimitLESS. A low-overhead LimitLESS client is deployed on every
node, and it ships the performance information to one node based on a pre-defined topology.
This way a logical binary tree is mapped over the compute nodes space, each node is
concentrating information from two children. Ultimately this allows to limit the number of
Prometheus clients. For fault tolerance consideration, we actually generate 8 different sub-
trees to cover the full system. One of the root nodes would failed, we would still have detailed
insight on ⅞ of the systems.

Tree overlay Network: monitoring without bottleneck

Operating in real-time

Operating in real-time is a trade-off brought by the volume of data to process. Traditional
solutions such as Darshan store information and display it after completion of the job, or they
present I/O load as an aggregated value.
In ADMIRE we address the real-time issue by making the difference between data and
information. We filter out data with limited information content. As a result we end-up with
BarrelEye, a Lustre extension, displaying live the volume of read/write and IOPS on a per job
basis. Thus, we can assess at any given point in time the fraction of the load generated by a
specific job. Our second take on the problem is leveraging the limitLESS component deployed
at Scale. Instead of shipping data every time step, the component ships data if and only if
metrics have changed. Reader can make the parallel with the straightforward Run Length
Encoding image compression scheme (RLE). This discrete compression algorithm is
simplistic, a more sophisticated way is to bet on compression. Lossy compression is a good
candidate: algorithms are fast, the importance of the last digit for performance monitoring is
low. Lossy compression allows a high update rate for the performance metrics without
overloading the system. Depending on the load we may receive slightly blurry images of the
performance but always at 24 frames per sec!

Performance Dashboard for ADMIRE: update rate every 5 seconds!

Co-operating

Two key performance rankings exist in HPC, the TOP500 ranking HPC systems based on their
CPU capabilities, and the most recent IO500 focused exclusively on I/O. Quite interestingly
both are mutually blind about the existence of its sibling. The path followed by ADMIRE is
slightly different. The performance daemon deployed on every compute node is also collecting
CPU and Memory information and actually hundreds of other metrics. The corollary of having
I/O and CPU information in the same database is that we can draw correlation. Breaking silos
is a nice step toward interoperability. But the definitive operational difference is the existence
of an API to question the database through RPC and PromQL1 requests.

ADMIRE develops a monitoring framework which can be automatically questioned about
either the status of the I/O, or the computational stress at the job or node level and in real time.
This monitoring technology is an enabler for the core of ADMIRE: an intelligent scheduler
able to take runtime decisions to optimize the efficiency of the system, which is indeed closing
the loop from observation to action!

1 Query language implemented by Prometheus

