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Abstract. High-Performance Computing is undergoing a significant trans-
formation as workloads become increasingly complex. Nested parallelism
and the proliferation of collocated functionalities in scientific software
have naturally led to increased software complexity. Consequently, launch
configurations have become more difficult to express in a portable man-
ner, requiring deep knowledge of both the application and target system
to run a program successfully. In this paper, we explore the concept of
a scale-agnostic syntax for running parallel jobs, possibly embedded in-
side the target binary. We expect this information to enable programs
to clearly express their launch configuration to the underlying scheduler,
making it easier to deploy and dynamically manage parallel applications.
We present a prototype implementation of this syntax in an online vi-
sualization tool and discuss the advantages and disadvantages of this
approach in terms of job expressivity and malleability.
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1 Introduction

Advanced HPC workflows organize themselves in data pipelines using I/O to
store intermediate results. The end-user then generally defines its work as a
succession of individual jobs chained by their inputs and outputs [7]. With such
configuration, the corresponding workflow graphs are most of the time linear
successions of jobs. Looking at job scheduling itself, such jobs are static in terms
of resources, being defined at launch time.

Over the previous two decades, various work has been done to solve this
static resource allocation where different nomenclature was used (malleability
[1], moldability [13], system- or application-driven, invasion [3, 16]) with each
one of them targeting just a particular way of requesting resources [12, 2] over
runtime and handling them. We do not want to restrict ourselves to one of these
particular cases and refer to the dynamic resource utilization as dynamism in
the present work.

The present paper will investigate a way of requesting particular resources
under dynamism while maintaining both data locality and portability between
machines. We will motivate it briefly with workflows [14, 4] in the following
sections.
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1.1 Regular job submission

On current HPC systems, job execution primarily relies on a batch manager
which allows the execution of jobs in sequence. Jobs can then be run with a
given command line and they rely on system abstractions to perform their com-
putation. As presented in Listing 1.1 using Slurm, each job capacity is given by
an upper bound and this limit remains fixed during the whole job execution.
This leads to the first limitation, namely, with a static resource allocation lead-
ing to situations where too many resources are allocated a priori, making the
execution less efficient, or where not enough resources are allocated, resulting in
a potential timeout of the job.

Listing 1.1: Sample sequence of command generating the flow shown in Fig. 1.

1srun −p mypartition −n 512 . / A0 &
2srun −p mypartition −n 512 . / A1 &
3wait
4srun −p mypartition −n 512 . / B

Fig. 1: Illustration of a feed-forward workflow composed of bulk-synchronous
applications. This chart depicts the data flow from and to the storage systems
to run the computations.

From the scheduling perspective, the whole job is seen as a single operation
on the global data flow, see Fig. 1. The arrows going back and forth between
compute and storage show that data has to move through most of the memory
hierarchy between each job. If we look at the data itself, the last entry, here
Datum B which is the final valorized data may be only a reduced subset of the
previous stages, resulting in significant performance deterioration and storage
wastes over time. One standard process of circumventing the aforementioned
data movements is called in-situ [7] exploring how jobs may collaborate in place,
instead of relying on I/O, however relying on the same resources.

Looking closer at Fig. 1, one can see that data-movements issues could be
also solved by having a runtime alternative discussed in the next section.
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1.2 Workflows with Job- and I/O-dependencies

In Fig. 2, we present the same computation seen as self-supported, in the sense
that components for managing data movements were spawned alongside the
job [17]. When considering workflows, it is possible to outline more complex
dependency graphs, sequencing job inputs and outputs over time. This enables
users to describe job dependencies in the workflows explicitly. In general, these
workflows are external definitions, including job sizes, the job sequence, and
some conditionals. The system would now be able to optimize, e.g., I/O resource
allocation for these particular needs. In addition, generalizing such jobs would
lessen the requirements on the service island which currently occupies a non-
negligible part of supercomputers mostly to implement I/O – leaving more space
for computing while keeping transitional data in the higher layers of the memory
hierarchy.

Fig. 2: Logical relationship in a nested self-configuring job.

Besides applying in-situ ideas also here (but with varying resources) one
can see that it would make the workflow of Fig. 2 much simpler. However, this
supposes the definition of a distributed cross-job data description [5, 4] which
is yet to be fully defined for HPC. This paper looks at the resource allocation
aspect with the idea of embedding it inside the job itself.

1.3 Job-defined workflows

One of the motivations for the contribution of this paper is the idea of a job-
defined workflow, standing somewhere at the crossroads of in-situ [7] and work-
flows [14]. Rather than having the dependencies given in terms of a workflow,
the workflow could be dynamically set up over a job’s runtime, see Fig. 3. An
entire workflow would then be embedded into a single job. The job could then set
up its child dependencies during its runtime (and the children’s grandchildren’s,
etc.). A clear disadvantage is that the scheduler can’t foresee the entire workflow
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Fig. 3: Illustration of a job unfolding in space and time as per Fig. 2.

before the job starts, leading to potential delays due to resource allocation as the
job runs. However, we also see strong advantages by, e.g., changing the resources
depending on the current state of the workflow (e.g., whether there are GPUs
or just CPUs available). Indeed, conversely reshaping a job over time is neces-
sarily linked with complex data management issues, due to the need to move
all the data-set. Whereas in the case we outlined here, self-unfolding workflows
embed programmatically the idea of the job’s reconfiguration, making the job
more prompt to reshape itself at the most suitable moment.

1.4 Intermediate summary

We have outlined the idea of replacing job workflows with jobs having the po-
tential to dynamically unfold workflows. This leads away from traditional batch
scripts to more elaborated orchestrators to put this feature as the first class cit-
izen in the programming model. Enabling a system with such dynamism would
require changes throughout the entire HPC stack. We’ll focus in the present work
on one of these peculiarities, namely how to describe the required resources very
concretely. Indeed, as presented in Figs. 2 and 3, enabling self-unfolding pro-
grams supposes the job requests resources over time. In addition, this process,
which is initially the concern of the user as shown in Listing 1.1 now becomes
part of the program. Consequently, there is a need for a new syntax allowing
to specify how to request and compose particular resources in a scale-agnostic
manner. As we will show in the next sections, we take the first steps with our
syntax towards a system-independent description where the program can re-
structure itself over the available resources without having to hardcode specific
values. this provides just one particular way of resource allocation which where
we see our approach somewhere between very explicit allocations (e.g., 5 CPUs)
and implicit allocations (e.g., give me the number of resources fitting to some
policies).
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2 Composing with Memory Affinity

Current architectures present increasingly complex memory hierarchies. Con-
temporary HPC hardware generally hosts several processors each attached to
a different NUMA socket, notwithstanding the case for accelerators, leading
to potentially detached memories or partial overlap, for example using High-
Bandwidth Memory (HBM). A direct consequence of this evolution is the need
for the locality to become central in most HPC runtimes; OpenMP devised places
[8] and MPI added support for topological discovery using new communicator
splitting values [9]. However, on the allocation side, the end-user is mostly trib-
utary to the choices of the underlying scheduler in terms of process mapping.
Most of the time, nodes are allocated linearly, and defining a more complex map-
ping syntax can become cumbersome due to system-specific descriptions. This
usually leads users to resort to the default behavior – ignoring locality or more
precisely leaving it to the underlying runtimes.
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Fig. 4: Core to core bandwidth variation on two different HPC-class machines
(all scales are in GB/sec). For transfers of 256 MB averaged 10 times.

In order to validate the machine structure we retain in the following sections
– structure driven by data locality – we have designed a simple memory bench-
mark3 computing memory bandwidth from core to core on a whole machine. As
presented in Fig. 4, memory locality can lead to well-known important perfor-
mance discrepancies when accessing data outside of the current NUMA node.
This is particularly visible in Fig. 4b, featuring 4 Sockets and 4 NUMA nodes, in
this case, the adjacency matrix clearly shows more optimal areas. Similar per-
formance effects are still present in Fig. 4a which features more recent processors
(128 cores over two AMD Milan sockets, running on two NUMAs). Observing
these performance effects and associated bandwidth variation clearly testifies
that locality is a key element in current HPC, which is of course well known, see

3 https://github.com/dynamic-resource/mapper
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[10, 6]. However, our take in the rest of this paper is that scheduling syntaxes
are still failing at capturing locality requirements in a compact and actionable
manner.

3 A Syntax for Resource Composition

A resource mapping syntax requires some description of the resources as well as
mapping jobs to these resources. Hence, we continue with an abstract machine
model followed by a resource composition syntax which is tightly bound to the
machine model.

3.1 Abstracting HPC Hardware into levels

Choosing hardware-related descriptors is never trivial as HPC hardware is evolv-
ing so quickly that it may become irrelevant in a future version. Therefore, we
propose to work on an overly simplified machine model. We consider a machine
built with a set of Nodes such as each node is running a separate memory
region with instances of lower splitting levels. Inside a Node, one can find Non-
Unified Memory Access NUMA regions which are privileged memory affinity
regions. These are not necessarily actual NUMA nodes, they could be sockets
or caches depending on runtime (or machine) configuration. Eventually, each
NUMA contains Slots. Slots are not always cores, they practically correspond
to individual MPI processes spanning on their affinity. It means that if there is
one MPI process per node all these levels are equivalent. Overall, this machine
description is not far from what slurm does with Node, Process, and Core as
a hierarchy with the only addendum of the NUMA level which is of increasing
importance since nodes are becoming larger. Besides, we consider these levels to
be embedded in each other, which means all Slots are part of various NUMAs
which themselves belong to different Nodes, hence

slot ⊆ numa ⊆ node

making Slots the smallest granularity of resource allocation. For the development
of a grammar, we will introduce formally the derivation

R → (node|numa|slot)

to refer to each of the levels.

3.2 Mapping Syntax

We aim to create a resource allocation syntax that can allocate resources from
any node configuration. This syntax should be largely independent of specific
resources and avoid relying using only resource specifiers such as “10 cores from
NUMA domain 12, 10 cores from NUMA domain 13, etc.”. It should also allow for
some degree of resource mapping, allowing preferences for process group layouts.
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Our motivation for creating this syntax comes from the observation that locality
constraints are critical performance factors in modern HPC payloads, as outlined
in Section 2. Once the syntax is specified, it can remain unchanged and enable
the program to map resources onto the target system in a portable way, based
on the previously introduced machine model.

The per-job proposed grammar is then given by a regular expression of the
form

J → (A|E|[0− 9]+)R

with terminals A and E explained later since we first need to introduce job lists.
To share resources between jobs that should be started, we also support

allocating resources for multiple jobs which can be expressed by a list of jobs

L → (J, L|J).

Before explaining the grammar which can be still rather complicated to be
understood, we already like to point out our visualizer using HTML + Javascript
available at https://dynamic-resource.github.io/project/grammar/. All fig-
ures used in this section to further exemplify the mapping syntax are generated
using this simulator. It also allows exploring the possibilities with this grammar.
The job specifiers in J have the following meanings:

– A: For a list L of jobs, this refers to all resources to be equally shared among
all of them specifying this qualifier.
E.g., Anode,Anode would share all nodes equally between 2 jobs.

– E: refers to one slot from “each” resource.
E.g., Enode allocates one slot from each node.

– [0-9]+ stands for a fixed number of resources, hence the rather traditional
way of resource allocation.
E.g., 4slot would allocate 4 slots.

3.3 Mapping Logic

After presenting the syntax and explaining its meaning, its behavior is still not
determinate due to various possibilities to implement it. Hence, what follows is
a discussion of one of many potential realizations. We do not want to claim this
to be the best realization but provide this in particular for the reproducibility
of our results. In particular, it sheds light on the logic of the simulator.

– First, the “each” specifier allocates one slot per dedicated level, starting from
the highest level to the lower ones (node, numa, slot).

– Second, the “fixed” specifier works in descending level order while account-
ing for resources taken by each modifier (solely at Numa and Node level).
Resources are allocated linearly.

– Third, the “all” specifier splits resources between the remaining processes as
evenly as possible.
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Then, slots are allocated again from the highest level policy to the lower one.
The level is then associated with locality, Node will allocate free Numa linearly
on nodes whereas Numa will do it over Numas. Eventually, the slot level will
proceed to the linear allocation over free slots.

Overall, the logic is simple: resources are linearly allocated, and no complex
computation is involved. The advantage of this model is that resources can be
dynamically split between jobs while ensuring locality. Despite being mostly
agnostic to resources, this syntax enforces several constraints. There must always
be enough resources to provide at least one slot to each program using the “all”
specifier. Similarly, a program using “each” should have sufficient resources on
each instance of the given level. Eventually, fixed allocations should also have
their resources fulfilled.

Due to its similarity, we like to point out such a feature in OpenMP which
allows similar resource allocations, but on shared-memory systems. Using the en-
vironment variable OMP_PLACES[8] allows referring to threads, cores, sockets, and
other memory-hierarchy-related resources, similar to what refers in the present
work as levels. Then, setting OMP_PROC_BIND in the environment allows to either
“spread” the threads across places or keep them “close” within one place. We
like to point out that the way how we can allocate resources is significantly more
flexible than OpenMP’s implementation.

3.4 Summary

In this section, we have introduced the mapping syntax we intend to use for
job-defined workflows. This syntax despite being very simple enables (1) re-
source differentiation splitting slots and (2) simple means of mapping arbitrary
processing when maintaining locality.

(a) 4 Nodes, 32 slots (b) 16 Nodes, 128 slots

Fig. 5: Usage of the Enode,A,A,A,A syntax (four jobs plus one job once on each
node) for scaling with 32 slots in 5a and 128 slots in 5b
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We show in Fig. 5 the compact and efficient syntax to describe the intended
resource mapping. Moreover, this syntax being resource agnostic, it also supports
transparent scaling as it scales up the initial mapping of Fig. 5a from 4 nodes to
16 in Fig. 5b without changing the resource specification which is possible due
to runtime resource allocation.

4 Use Cases

To illustrate some use cases for our mapping syntax, and more generally for
self-unfolding jobs, we present some practical examples in this section. First,
we discuss MPMD, then we focus on the requirements for parallel I/O and
eventually, we generalize to self-unfolding jobs.

4.1 I/O Collocation

Fig. 6: Enode,A

I/O backends such as ad-hoc storage are well-
known candidates for collocation. In general,
the service has to be spawned once per node to
allow local processes to communicate through
efficient data channels with the I/O backend.
Fig. 6 presents how one may want to allo-
cate one slot per node for I/0 while provid-
ing the rest to the application. The same syn-
tax is also shown in conjunction with more
jobs in Fig. 5. In summary, our mapping syn-
tax makes the deployment of ad-hoc services
much more simple, directly expressing from a
machine hierarchy what has to run where and
dodging potential complexities in the slurm
command line to do similar mappings.

4.2 Elastic MPMD

Fig. 7 presents the resulting process layout for two applications, first globally,
then over Nodes, and eventually over NUMAs. These layouts are splitting re-
sources between the two jobs using various levels of the abstract machine model
hierarchy. As of now, getting such control from Slurm, for example, is not trivial
and requires precise handling of the topology and command line parameters.
Whereas, in these three simple examples we were able to quickly explore three
different mapping for the two applications by simply changing the mapping syn-
tax while keeping the same number of processes.

4.3 Job-defined Workflows

The two previous examples are simple ones derived from relatively classical jobs,
particularly the MPMD one. However, the focus of this contribution is the notion
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(a) A,A (b) Anode,Anode (c) Anuma,Anuma

Fig. 7: Comparison of MPMD mapping syntaxes over Slots, Nodes, and NUMAs.

of self-defined workflow which defines a job deploying itself on resources, and
therefore actively interacting with the scheduler. In such a scenario, there first
is a need for resource allocation and deallocation, which can be handled through
the PMI(x), see [11] interface. There is also a need for remapping the program
over the newly allocated resources, either to occupy new cores or to alternate
between configurations as the workflow unfolds. As a consequence, the ability to
shrink or grow the allocation combined with our resource mapping syntax would
allow a program to reshape itself over time in a portable manner – opening the
way even more for a success of dynamism in traditional HPC workloads.

5 Conclusion

In this paper, we first presented the idea of self-unfolding jobs. From regular
batch executions leading to workflows relying on the file system and thus mov-
ing data through most of the memory hierarchy, we posed the question of how
to alleviate this bottleneck. Acknowledging existing work in in-situ and work-
flows, we pose the questions of defining a compact runtime and more precisely
mapping syntax to ease the expression of more horizontal HPC payloads – col-
locating multiple programs in the allocation. In particular, we motivated this
approach with a memory bandwidth benchmark clearly outlining that local-
ity requirements can lead to important performance impacts. Hence, we pre-
sented a new scale-agnostic syntax for resource composition enabling (1) com-
pute locality and (2) resource composition between multiple jobs. This syntax
has been implemented in a dedicated simulator, illustrating its use at https:

//dynamic-resource.github.io/project/grammar/. Eventually, we discussed
some use cases for this syntax, illustrating the corresponding job layout and syn-
tax’s compactness. This work is an initial step towards scaling of HPC payloads
under dynamism with all the aforementioned benefits, and much is to be done to
eventually enable ideas long devised in other fields such as in-situ and workflows.



Towards a Standard for Requesting Resources in a Dynamic Environment 11

6 Future Work

Malleability[1], moldability[13], workflows[14], and in-situ[7] are all known and
active research topics in HPC. However, despite their advantages, they are not
yet leveraged in HPC payloads. Meanwhile, the complexity of parallel hardware
with resource specialization may vanish in a need for symmetrical software spe-
cialization – finally unfolding ideas explored in the aforementioned fields. Yet,
this evolution is transversal to the whole HPC stack, changing how programs
run, and how they unfold requires new practices, if not a revolution for HPC.
In this paper we have only scratched the surface of the overall issue, only defin-
ing potentially self-unfolding workflows and associated mapping capabilities. In
particular, the present paper only covers the cases of resource requests with-
out providing any other information such as how the program would perform
on the new resources in an implicit way[15, 18]. We see requirements for both
resource allocations and also chances of them co-existing if designed in the right
way. It appears clearly that an effort transversal to all the relevant HPC stan-
dards (PMIx, MPI, OpenMP) and tools are needed to make this shift. First
to demonstrate, quantitatively the advantages of this model and then to pro-
gressively open users to new programming primitives enabling more horizontal
programming.
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H., Soiland-Reyes, S., Gavrilović, B., Goble, C., et al.: Methods included: Standard-
izing computational reuse and portability with the common workflow language.
Communications of the ACM 65(6), 54–63 (2022)

6. Denoyelle, N., Goglin, B., Ilic, A., Jeannot, E., Sousa, L.: Modeling large compute
nodes with heterogeneous memories with cache-aware roofline model. In: High Per-
formance Computing Systems. Performance Modeling, Benchmarking, and Simu-
lation: 8th International Workshop, PMBS 2017, Denver, CO, USA, November 13,
2017, Proceedings 8. pp. 91–113. Springer (2018)

7. Dorier, M., Dreher, M., Peterka, T., Wozniak, J.M., Antoniu, G., Raffin, B.:
Lessons learned from building in situ coupling frameworks. In: Proceedings of the
First Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis
and Visualization. pp. 19–24 (2015)

8. Eichenberger, A.E., Terboven, C., Wong, M., an Mey, D.: The design of openmp
thread affinity. In: OpenMP in a Heterogeneous World: 8th International Workshop
on OpenMP, IWOMP 2012, Rome, Italy, June 11-13, 2012. Proceedings 8. pp. 15–
28. Springer (2012)

9. Goglin, B., Jeannot, E., Mansouri, F., Mercier, G.: Hardware topology management
in mpi applications through hierarchical communicators. Parallel Computing 76,
70–90 (2018)

10. Hoefler, T., Jeannot, E., Mercier, G.: An overview of process mapping techniques
and algorithms in high-performance computing. High Performance Computing on
Complex Environments pp. 75–94 (2014)

11. Huber, D., Streubel, M., Comprés, I., Schulz, M., Schreiber, M., Pritchard, H.:
Towards dynamic resource management with mpi sessions and pmix. In: Eu-
roMPI/USA’22: 29th European MPI Users’ Group Meeting. p. 57–67. ACM, Chat-
tanooga TN USA (Sep 2022). https://doi.org/10.1145/3555819.3555856, https:
//dl.acm.org/doi/10.1145/3555819.3555856

12. Iserte, S., Mayo, R., Quintana-Orti, E.S., Pena, A.J.: Dmrlib: Easy-coding and effi-
cient resource management for job malleability. IEEE Transactions on Computers
70(9), 1443–1457 (2020)
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