
Adaptive multi-tier intelligent data
manager for Exascale

ADMIRE Users Day

The Environmental Application
Diana Di Luccio, Ciro Giuseppe De Vita, Gennaro Mellone,

Livia Marcellino, Angelo Ciaramella, Giulio Giunta and Raffaele Montella
Consorzio Nazionale per l’Informatica

University of Naples “Parthenope”

December 12th 2023.
Barcelona Supercomputing Center

Grant Agreement number: 956748 — ADMIRE — H2020-JTI-EuroHPC-2019-1

admire-eurohpc.eu

Presentation outline

● Introducing the Environmental Application workflow

● The Environmental Application building blocks

● WaComM++: Water quality Community Model

● WaComM++: Designed with the computational malleability in mind

● DagOnStar: Directed Acyclic Graph on Anything

● Conclusions

2

How to use this presentation.
The full presentation is intended as ADMIRE dissemination material for an half day front seminar followed by half day hands on
tutorial.
The Environmental App is provided as an example within the DagOnStar repository.

The WaComM++ demo is available as step by step hands-on tutorial on the WaComM++ repository.

Introducing Environmental Application

3

Sort of a “digital twin” of a real environment… but not just a buzzword!

Products

4

1 2

11/12/23

3

Weather forecasts (7d, 1000m) Sea currents (7d, 160m) Inerts tracing (7d, 160m)

The workflow

The applications’ building blocks:
1. Weather Forecast
2. Ocean Dynamics Forecast
3. Inert Transport and Diffusion Forecast

5

Initial and
Boundary
conditions

WRF
Preparation

Weather
Research and

Forecast

ROMS
Preparation ROMS WaComM++

Initial and
Boundary
conditions

WRF Post
processing

ROMS Post
processing

WaCoM Post
processing

Distributed
Memory (MPI)

Parallel
Pattern

Hierarchical &
heterogeneous

Parallelism

Shared
Memory
(OMP)

1 2 3

Initial and
Boundary
conditions

The Environmental Application building blocks

6

Like a Lego toy but with a more challenging interface system

WRF: Weather Research and Forecast

11/12/23 7

Initial and
Boundary
conditions

Ungrib

Weather
Research and

Forecast

ROMS
Preparation

WRF Post
processing

Weather
Research and

Forecast

WRF Post
processing

Weather
Research and

Forecast

WRF Post
processing

Geogrid

metgrid

real

...

Day
0

Day
1

Day
6

WRF Preparation

http://wrf-model.org

https://www.mmm.ucar.edu/models/wrf

http://wrf-model.org

WRF: Input & Output

11/12/23 8

Storage: 107.4
GB/run

Scratch: 105 GB/run

Global Forecast System
National Centers for Environmental Prediction

Resolution: 0.5 degrees/3h
4 dataset per day
39 GB/run - 5.6 GB/day.

Domain 1, 25Km, 1h, 168h

History:
2.2 GB/day, 15.4 GB/run

Archive:
539 MB/day, 3.8 GB/run

Restart:
0.4 GB/day, 2.8 GB/run

Domain 3, 1Km, 1h, 168h

History:
2.9 GB/day, 20.3 GB/run

Archive:
1.6 GB/day, 11.2 GB/run

Restart
0.6 GB/data, 4.2 GB/run

Domain 2, 5Km, 1h, 168h

History:
4.3 GB/day, 30.1 GB/run

Archive:
2 GB/day, 14 GB/run

Restart:
0.8 GB/day, 5.6 GB/run

input

output

https://www.mmm.ucar.edu/models/wrf

ROMS: Regional Ocean Model System

9

ROMS

WaComM++

Atmospheric Initial
conditions (WRF)

ROMS Post
processing

Ocean Initial and
boundary conditions

ROMS Preparation

Input
Preprocessor

Grid
Preprocessor

http://myroms.org

https://www.myroms.org

http://myroms.org

ROMS: Input & Output

10

WRF - CMMMA

27 GB/run

Domain 3, 160 m, 1h, 168h

History:
63 GB/day, 441 GB/run

Archive:
7.3 GB/day, 51.1 GB/run

input

output

Storage: 492 GB/run
Scratch: 332.5 GB/run

Copernicus

0.4 GB/run

https://www.myroms.org

WaComM++:
Water quality Community Model

11

A highly scalable high-performance Lagrangian transport and diffusion model
for marine pollutants assessment

WaComM++: Water quality Community Model ++

12

Initial Conditions
(ROMS)

WaComM++

WaCoM Post
processing

WaCoM restart
WaCoM restart
(previous run)

Emission Sources

https://github.com/ccmmma/wacommplusplus
La

gr
an

gi
an

Tr

an
sp

or
t…

…and Diffusion.

Sewer Outlets

WaComM++: Input & Output

ROMS - CMMMA

305 GB/run

input

output

Storage: 68.4 GB/run
Scratch: 353 GB/run

Domain 3, 160m, 1h, 168h

History:
6.1 GB/day, 42.7 GB/run

Archive:
1.9 GB/day, 13.3 GB/run

Restart:
1.8 GB/day, 12.4 GB/run

https://github.com/ccmmma/wacommpluspl
us

WaComM++ architecture

14

The overall computation is performed
over three nested cycles:
Ocean state outer cycle: for each time-
referenced dataset (usually 1-hour), a
WaComM component is instanced.
Particles outer cycle: moves the
particle to process using ocean data.
Particle inner cycle: moves the particle
within the considered time slice,
applying the Lagrangian transport and
diffusion equations integrated on a
given time step.

While time-dependent iterations characterize the ocean state outer cycle and the inner particle cycle, the particles’ outer
cycle has been hierarchically parallelized because each particle movement is independent of the others.

https://github.com/ccmmma/wacommplusplus

WaComM++ hierarchical parallelization schema

15https://github.com/ccmmma/wacommplusplus

W
ith

 m
ul

ti-
G

PU
 p

ar
ad

ig
m

.

WaComM++ evaluation configuration

16

We use the following configurations:

- 25 million particles spilled out by a single coastal source
located in the Gulf of Napoli (Campania, Italy)

- no restart mode

- 24 h of simulation

- Different parallelization schema

PurpleJeans (HPC Tests):
2 Intel(R) Xeon(R)Gold 5218 CPU@2.30GHz 16 cores each)
4 Nvidia Tesla V100SXM232GB 5120 CUDA cores each)

https://rcf.uniparthenope.it

WaComM++ evaluation configuration

❑ Baseline → one process, only one thread, and no GPUs (sequential mode)

❑ Distributed Memory (MPI approach): 1, 2, 4, 8, 16, 32, 64, and 128P on four computing nodes, considering only
1T.

❑ Shared Memory (OpenMP approach): Considering only one MPI process, we used 1, 2, 4, 8, 16, and 32T on one
computing node with 1P.

❑ Shared Memory and CUDA (OpenMP-CUDA approach): We consider both the single GPU
and the multi-GPU cases. A single process is tested from shared memory threads varying from 1 to 32T, sharing 1, 2,
and 4G.

❑ Distributed Memory and CUDA (MPI-CUDA approach): We consider both the single GPU and the multi-GPU
cases. Multiple processes are tested, varying from 1 to 8P, using only one thread sharing 1, 2, and 4G.

❑ Distributed Memory, Shared Memory, and CUDA (MPI-OpenMP-CUDA approach): We consider both the single
GPU and the multi-GPU cases. A multiple 1 to 4P is tested using shared memory fixed on 32T sharing 1, 2, and
4G.

17https://github.com/ccmmma/wacommplusplus

Wacomm++ evaluation

18

Particle Outer-Cycle execution
times results without CUDA
approach

Particle Outer-Cycle
execution times results
using CUDA approach.

“P” is the number of MPI processes, “T” is the number of OpenMP processes, and “G” identifies the number of GPU
devices considered for the computation. https://github.com/ccmmma/wacommplusplus

Wacomm++ evaluation

19

Speed up of the OpenMP-MPI approach Speedup of the OpenMP-MPI-CUDA approach

https://github.com/ccmmma/wacommplusplus

WaComM++:
designed with the computational malleability

in mind

20

Malleability is no good for all recipes, but for this one is really, really tasty!

Computational malleability in mind

21

• 3 main cycles:

• Flex-MPI
Martin, Gonzalo, Maria-Cristina Marinescu, David E. Singh, and Jesus Carretero.
"FLEX-MPI: an MPI extension for supporting dynamic load balancing on heterogeneous
non-dedicated systems." In European Conference on Parallel Processing, pp. 138-149.
Springer, Berlin, Heidelberg, 2013.

Ocean outer cycle (iterate over
ocean status by time)

Outer particles cycle (compute in
parallel each inert particle path)

Inner particle cycle (compute the
particle movement, sequential)

Malleable-WaComM++: Flex-MPI

22

Main issues:
the problem
size varies
between one
iteration and
another.
Process 0 does
operations
affecting the
problema size.

https://github.com/ccmmma/wacommplusplus

Main issues & work in progress with the Flex-MPI team

23

• Simplified iteration schema:
• Process 0:

• Generate new particles
• Prepare displacements and counts

• Broadcast the counts to all processes
• Scatter the particles to processes
• Compute the particles' outer cycle
• Gather the particles from processes
• Process 0:

• Remove died particles
• Performs I/O

• Register/Unregister: the size changes at each iteration
• The displacement and the count is changed at each iteration by the process 0

https://github.com/ccmmma/wacommplusplus

Main issues & work in progress with the Flex-MPI team

24

• We worked tightly with the Flex-MPI team to move from the first
malleable WaComM++ prototype to the full featured WaComM++

• WaComM++ can be build with Flex-MPI for production

https://github.com/ccmmma/wacommplusplus

Flex-MPI: increasing processes scenario

25

•WaComM++ is configured to perform a 24h simulation (24 iterations).
•At each iteration 250k particles are added, finally some of them will not
survive (health, borders closures).
•At each iteration the number of processes is increased by 1.

• The metric used for performance evaluation is the number of particles
processed per second computed by the process 0 considering the time for
particles generation, data distribution, computation and recollection.
• The time needed for I/O is not considered in this case.

https://github.com/ccmmma/wacommplusplus

Flex-MPI: increasing processes scenario

26

● Simulation of 24 hours of 250K
particles emitted per hour from a
single emission point.

● The problem size is distributed on
a new spawn process each
simulated hour.

Flex-MPI: constant performance scenario

27https://github.com/ccmmma/wacommplusplus

• WaComM++ is configured to perform a 24h simulation (24 iterations).

• At each iteration 250k particles are added, finally some of them will not survive (health, borders
closures).

Flex-MPI: constant performance scenario

28https://github.com/ccmmma/wacommplusplus

• The target performance metric has been constrained in the range between 9k particles per second
up to 11k particles per second.
• The number of processes varies by means of stay in the costrains.
• The time needed for I/O is not considered in this case.

DagOnStar: Yet Another Python-Based
Workflow Engine

29

…that works like a charm for computational environmental science applications…

Direct Acyclic Graphs as parallel jobs on anything

11/12/23

DagOnStar is a production-oriented workflow engine:

● Integration in the Python environment.

● Minimal footprint for external software components execution.

● Avoiding any centered data management.

● Straightforward definition of tasks:
○ Python scripts.
○ Web interaction.
○ External software components.
○ Parallel patterns.

● Execution sites independence:
○ Local / scheduler (SLURM).
○ Containers (Docker).
○ Clouds (AWS, OpenStack, DigitalOcean).

● Similar products (short incomplete list): Parsl, StreamFlow, …

Named after the Phoenician god-
fish Dagon known by ancient
Greeks as Triton.

NB: The star symbol * is the
wildcard for anything.

https://github.com/dagonstar/

Programming Model

11/12/23 31

DagOnStar has been designed by a computational environmental application friendly
programming model.

Python Script: “DagOnStar Hello World App”

from dagon import Workflow
from dagon.task import TaskType, DagonTask
…
workflow = Workflow("myapp")
workflow.add_task(DagonTask(TaskType.BATCH, "a", "..."))
workflow.add_task(DagonTask(TaskType.BATCH, "b", "workflow:///a"))
workflow.add_task(DagonTask(TaskType.BATCH, "c", "workflow:///a"))
workflow.add_task(DagonTask(TaskType.BATCH, "d", "workflow:///b
workflow:///c"))
workflow.run()
sys.exit(0)

a

b c

d

Defined by task
dependencies.

Defined by data
dependencies.

● Dealing with actual data files instead of high-level defined datasets.

● Performing backward data references in order to create dependencies.

● Having more Workflow instances in the same Python application.

Tas
k F

low

Data
 Flow

Data
 Flow

Simple toy
DAG

https://github.com/dagonstar/

The workflow:// schema

11/12/23 34

workflow://workflow_unique_name/task_unique_name/

The Batch component takes charge of the management of data
dependencies using the workflow:// schema.

The schema label The workflow unique name
An UUID could be used
If empty means “current workflow”

The task unique name
Can be dynamically generated by
the Python script when the workflow
is created programmatically.

Ta
sk

 s
cr

at
ch

di

re
ct

or
y

ro
ot

Ex
te

rn
al

 s
of

tw
ar

e
sa

nd
bo

x

Scratch directory

Workflow

Stager

ln

scp

Grid
ftp

● Local
● Shared File System
● Remote scratch directory on physical

machine, virtual instance or container

O
ne

 O
f..

.

out

in

workflow:///task_a/results.csv

https://github.com/dagonstar/

Conclusions

40

…everything has a start, sooner or late comes to the end…

Conclusion (1/2)

Data Dissemination:
• Technical web portal
• Progressive Web Application
• Opendap Server
• Http
• Web APIs

WaComM++ step by step tutorial is available
on the repository:
https://github.com/CCMMMA/wacommplusplus

41

The Environmental Application is available as:

1. Example in the DagOnStar workflow engine
repository:
https://github.com/DagOnStar/dagonstar
In both dry run (easy way) and real flavours (if you
like playing hard).

2. As ADMIRE use case on the University of Torino
HPC cluster (with computationally malleable
WaComM++).

3. In routinary production on dedicated HPC
resources (HPC-GPU BlackJeans, 650 CPU
cores, 1 PB long term storage,
http://rcf.uniparthenope.it)

https://github.com/CCMMMA/wacommplusplus
https://github.com/DagOnStar/dagonstar

Conclusion (2/2)

42

• It runs basically uninterrupted since the first
prototype.

• Almost failsafe: time to recovery after a catastrophic
event (full storage loss), less than 72 hours.

• Runs as DagOnStar application

• The WaComM++ transport and diffusion model has
already used for different applications.

