
In-Situ/In-Transit Data Transformation Using Resource Efficiently

ADMIRE users day

12.12.2023 Barcelona, Spain

Adalberto Perez
KTH Engineering Mechanics
Stockholm, Sweden

Stefano Markidis
KTH Electrical Engineering and Computer
Science
Stockholm, Sweden

Philipp Schlatter
Friedrich-Alexander-Universität
Erlangen-Nürnberg, Germany

Erwin Laure
Max Planck Computing & Data Facility
Garching near Munich, Germany

Yi Ju
Max Planck Computing & Data Facility
Garching near Munich, Germany

Laura Bellentani
CINECA
Casalecchio di Reno, Italy

Niclas Jansson
KTH Computer Science and
Communication
Stockholm, Sweden

Dominik Huber
Technical University of Munich
Garching near Munich, Germany

Martin Schreiber
Université Grenoble Alpes
Grenoble, France

Motivation

2

High Performance Computing (HPC) systems

• Rapid increase in computational capacity with heterogeneous
computing recourse

• Relatively slow improvement of input/output (IO) subsystem
• Limited storage capacity

Post-mortem data processing

Workflow:
• Simulation solver write results through IO subsystem to storage
• Data processor read the data through IO subsystem from storage
Disadvantage:
• Bottleneck in IO because of the IO bandwidth
• Limited frequency to preform data processing

In-situ data processing
Workflow:
• Data processer receive data from simulation solver without via IO

subsystem and storage
Challenge:
• Data processing could bring overhead to the simulation
• Data processing could influence the scalability of the simulation

Characteristics:
• Computationally expensive
• Requiring large storage for the results (tens of GB per

simulation step)
• CPU underused by most GPU accelerated applications

High Performance Computing (HPC) applications

Synchronous, Asynchronous and Hybrid In-Situ Data Processing

3

Synchronous in-situ approach

Workflow:
• Simulation waits until data processing

finished

Asynchronous in-situ approach

Workflow:
• Simulation sends data to separate

computing resources and continues
• Data are processed concurrently

Hybrid in-situ approach

Workflow:
• First part of data processing is synchronous
• Second part of data processing is

asynchronous

State-of-the-Art

4

• VisIt with Libsim

• ParaView with Catalyst

• SENSEI

• Adaptable IO System (ADIOS)

In-situ systems ADIOS

• Arbitrary data structure
• Runtime configuration
• Application programming interfaces (APIs)

for multiple programming languages
• Operators such as lossless compression
• MPI-based data communication between

arbitrary configuration 1

1: https://adios2.readthedocs.io/en/latest/components/components.html
2: https://github.com/Nek5000/Nek5000

Simulation solver

Characteristics:
• Direct Numerical Simulation (DNS) solver
• “Matrix-free”
• Scalability from “local domain”

Nek5000: 2

• CPU version: Fortran
• GPU version: Fortran with OpenACC

https://adios2.readthedocs.io/en/latest/components/components.html
https://github.com/Nek5000/Nek5000

51: Original from “M. Atzori, W. Ko ̈pp, S. W. Chien, D. Massaro, F. Mallor, A. Peplinski, M. Rezaei, N. Jansson, S. Markidis, R. Vinuesa et al., “In situ visualization of
large-scale turbulence simulations in nek5000 with paraview catalyst,” The Journal of Supercomputing, vol. 78, no. 3, pp. 3605–3620, 2022.”

Image generation

Nek5000
Fortran

Spectral-element
method

Catalyst adaptor
C++

Spectral-element
mesh

VTK format

In-situ approach

Fortran functions
C/C++ functions
called in Fortran C++ functions

Nek5000 Nek-proc adaptor
ParaView & Mesa

with Pipeline defined
in Python

Image generator

in-situ function

• Nek5000 with synchronous image generation:

Data deep copy

Nek5000 Nek-proc adaptor
Data passing by

addressin-situ function

ADIOS writer

Image generator

ADIOS insituMPI
writer

Rdr-proc adaptor ADIOS reader
ADIOS insituMPI

readerData deep copy

• Nek5000 with asynchronous image generation:

ParaView & Mesa
with Pipeline defined

in Python

VTK
file

IO subsystem

1

Pipeline
Python

Instructions for
ParaView

PareView & Mesa
C++
Slice

Rendering

Image composition

Nek5000 with Synchronous and Asynchronous Image Generation

CPU-based Nek5000 with Synchronous and Asynchronous Image Generation

1: Execution time of Nek5000 with synchronous in-situ image generation every two steps on Raven supercomputer (left) and
asynchronous in-situ image generation every two steps on 24 Raven nodes (right).

1

Asynchronous In-Situ Image Generation (with 1728 cores)
(45G VTK file for one image avoided)

A

B

A

B

Nek5000 simulation Image generation Idle

Synchronous In-Situ Image Generation

6

Optimal

CPU-Based Nek5000 with In-Situ Image Generation

1: https://time-x.eu/Nek5000 simulation Image generation Idle

Time

Number of resource

Time

Number of resource

Synchronous

Asynchronous

However, it makes more sense to visualize the results after simulating for certain steps.

Time

Cooperation with Time-X 1
Envolving job with MPI Session

Number of resource

Time

Number of resource

7

Dominik Huber & Martin Schreiber

●Main idea: time direction as an additional direction for parallelization of PDE solvers

Time-X - Interdisciplinary research:
• Mathematical Theory
• Computational Science
• Application Development

Time-X @ TUM: Adaptive PinT methods
• Dynamically change number of parallel

timesteps
• Requires application interface for

dynamic resources → DPP

Time-X: TIME parallelization for eXascale computing and beyond

8

Technical
Univ. of Munich

Dominik Huber & Martin Schreiber

Time-X: Dynamic Processes with PSets (DPP)

9

Technical
Univ. of Munich

Goal: A generic application interface for dynamic resources
• Centered around processes, process sets and set operations
• Cooperative resource management between applications and RM
Prototype:
- OMPI
- OpenPMIx
- PRRTE
- PMIx-based RM

MPI Interface for writing
dynamic applications

Optionally: plug in your
own custom scheduling
policy using Python

Adaptive CPU-Based Nek5000 with In-Situ Image Generation

Nek5000 simulation Image generation

Time

Idle

Time

Time

Number of resource

St
at

ic

Sy
nc

hr
on

ou
s

2002 steps, start to do in-situ at 1002 every 2 step

Number of resource

St
at

ic

As
yn

ch
ro

no
us

2396.595064s

2357.325227s
2364.142726s

18 nodes for Nek5000 and 6 nodes for asynchronous
image generation
Total time: 4837.34s
In-Situ time: 124.05s
Resource usage: 101712.62 s nodes

18 nodes for Nek5000 and 1 node (2 sockets) for
asynchronous image generation
Total time: 5155.73s
In-Situ time: 451.839s
Resource usage: 95601.45 s nodes

24 nodes for Nek5000 and synchronous image generation
Total time: 5567.10s
In-Situ time: 2005.55s
Resource usage: 133610.40 s nodes

24 nodes for Nek5000 (3/4 of cores per socket) and
asynchronous image generation (1/4 cores per socket)
Total time: 4450.62s
In-Situ time: 40.9199s
Resource usage: 106814.88 s nodes

Number of resource

D
yn

am
ic

As

yn
ch

ro
no

us

Time

Number of resource

D
yn

am
ic

As

yn
ch

ro
no

us
 2

Performance Model of In-Situ Techniques

11

𝑓 �⃗� = 𝑓!"#$% + 𝑛 𝑓&'() + 𝑓*()'+
𝑔 �⃗� = 𝑔!"#$% + 𝑛 𝑔&'() + 𝑔*()'+

Performance model of original application:

Performance model of in-situ task:

Freqency of in-situ task: 𝜐

Performance model of synchronous in-situ technique: Performance model of asynchronous in-situ technique:

𝜓 �⃗� = 𝑓!"#$% +𝑔!"#$%
+𝑛 𝑓&'() + 𝜐𝑛 𝑔&'()
+𝑓*()'+ + 𝑔*()'+

𝜓 �⃗� = max 𝑓!"#$% + -1 𝜐 𝑓&'(), 𝑔!"#$%
+ 𝜐𝑛 − 1 max ⁄, - 𝑓&'(), 𝑔&'()
+max 𝑓*()'+ , 𝑔&'() + 𝑔*()'+
+ 𝜓./&&

Performance Model of In-Situ Techniques

12https://github.com/extra-p/extrap

Case study R2 (Synchronous) R2 (Asynchronous)

CPU-based QE with data compression 0.9780 0.9770

GPU-based QE with data compression 0.9180 0.8840

CPU-based Nek5000 with data compression 0.9983 0.9988

CPU-based Nek5000 with image generation 0.9994 0.9940

CPU-based NEKO with data compression 0.9993 0.9896

CPU-based NEKO with image generation 0.9986 0.9982

GPU-based NEKO with data compression 0.9838 0.9451

GPU-based NEKO with image generation 0.9945 0.9472

Performance models of original application and of in-situ task are generated with Extra-P. 1
We use coefficient of determination R2 to evaluate the performance models derived.

Approaches

Case study

• The synchronous in-situ approach: simulation waits until data process finished
• The asynchronous in-situ approach: simulation sends data to separate computing resources and continues, while data are processed

concurrently
• The hybrid in-situ approach: the first part of data process is synchronous; the second part of data process is asynchronous.

• CPU-based Nek5000 with asynchronous in-situ image generation shows that poor scalability of image generation makes asynchronous
approach more beneficial.

• Adaptive CPU-based Nek5000 with asynchronous in-situ image generation shows that in-situ technique with dynamic resource allocation
can reduce the resource usage.

• Performance model of in-situ techniques could be derived from performance models of original applications and in-situ tasks generated
from Extra-P and it proved to be accurate with CFD applications Nek5000 and NEKO and Molecular Dynamic application Quantum
Espresso with in-situ tasks.

13

Outlook

• Deep learning training as in-situ task
• In-situ tasks to exascale simulation

Thank you for your attention!

In-Situ/In-Transit Data Transformation Using Resource Efficiently

