

Hercules: scalable and network portable in-memory ad-hoc file system for data-centric and highperformance applications

Javier Garcia-Blas and Jesus Carretero

University Carlos III of Madrid, Spain

fjblas@inf.uc3m.es

ADAPTIVE MULTI-TIER INTELLIGENT DATA MANAGER FOR EXASCALE

ADMIRE Users Day - Barcelona

Motivation

- I/O-intensive HPC-based applications have been primarily based on distributed object-based file systems.
 - Separate data from metadata management.
 - Enable each client to **communicate in parallel** with multiple storage servers.
- Exascale I/O raises the throughput and storage capacity requirements by several orders of magnitude.
- Current challenges:
 - Systems already developed for data analytics are not directly applicable to HPC due to the **fine-granularity** involved in scientific applications.
 - Semantic gap between the application requests and the way they are managed by the storage back-end at the block level.

Hercules

- Ad-hoc/in-memory storage solution for volatile data.
- Distributed key-value store.
- Provides a flexible API.
- Makes use of main memory as the storage device.
- Provides multiple data distribution policies.
- Exposes a POSIX/non-POSIX interface.
- Open source project.
- Fully implemented POSIX support (passed full IO500 benchmark).

II Hercules

https://gitlab.arcos.inf.uc3m.es/admire/hercules

Unified Communication X (UCX)

- Generic abstraction of the network layer
- Supported devices: Infiniband, Omni-path, TCP, shared memory
- Benefits of using UCX inside Hercules:
 - Multiple network interfaces/protocols available (TCP/IP, Omnipath, Infiniband supported).
 - Zero-copy message transfers of large data packages (>= 1 Mbytes).
 - Eliminated internal copies from application to network layer.
 - Asynchronous communication between peers.
 - RDMA QoS isolation.
 - End-point/two-sided-based communication.

Internal data layout

- Data paths are translated from logical to dataset shape (logical view).
- Files are divided into multiple blocks under multiple data nodes (physical view).
- Distribution policy determines the physical location of blocks, mapping the physical data/metadata nodes (mapping).
- Inter-node metadata information is stored at the first metadata node mapping(0).

application-dettached

application-attached

Hercules Features

- Non-blocking/tag-based communication (MPI style)
- Low-level communication schema (in contrast to Margo RPC)
- Client-side
 - Data and metadata UCX's workers enables communication overlap.
 - Malleability
 - Client nodes store a list of current available workers.
 - This list can be adapted during runtime.
 - QoS
 - Interfaces and protocols can be enabled/disabled to adapt network requirements.
 - Communication can be upgraded/downgraded (Infiniband to TCP).
 - Communication parameters configured by using environment variables.
- Server-side
 - One single listener per worker thread.
 - Stores a pool of active end-points (two-sided communication).

Data distribution policies

- **ROUND ROBIN**: data blocks are distributed among the Hercules servers.
- BUCKETS: each dataset is divided into the same number of chunks as number of servers. Each chunk is composed by a consecutive number of data blocks, equally distributed. Then, each chunk is assigned to a unique server.
- HASHED: a hash operation is applied over each data block key to discover the mapped server.
- CRC16bits & CRC64bits: similar to HASHED policy, but a sixteen/sixty four bits
 CRC operation is applied over the data block key.
- LOCAL: each data block is handled by the Hercules server running in the same node that the client.

File system malleability

- Malleability operations can be started by two alternatives sources:
 - external controller or
 - internal heuristic.
- Internal heuristic determines whether a malleability operation should be carried out.
- Users define recommended I/O throughput (RIO) for the I/O system.
- Hercules tracks the current throughput provided by the I/O system to the application (AIO).
- Throughput distance is currently computed using a time series obtained by write/read in-place monitoring:
 - Consecutive operations,
 - Datasets accesses.

Access to the storage infrastructure

- API library
- FUSE
- LD_PRELOAD by overriding symbols
 - Facilitates to integrated with existing applications.
 - Works on booth attached and detached deployment strategies.
 - Passed IO500 benchmark succesfully.

Evaluation (Scalability)

- University of Torino cluster.
- 64 Broadwell compute nodes. Intel Onmi-path running at 100 Gbps
- UCX 1.15. OpenMPI 4.1
- IOR. Strong scalability, single shared file accesses. 512 Kbytes block size.

Evaluation (Metadata)

IO500 benchmark.

	BeeGFS (30)	Hercules (30)	BeeGFS (90)	Hercules (90)
find	1.056	8.120	8.088	23.538
mdtest-hard-write	31.062	34.565	92.322	73.179
mdtest-easy-stat	16.162	24.667	40.760	25.439
mdtest-hard-stat	9.860	8.332	32.482	22.165
mdtest-easy-delete	23.052	10.329	59.737	50.579
mdtest-hard-read	23.953	18.432	77.337	53.956
mdtest-hard-delete	14.648	19.887	48.321	60.104

Hands-on

- Multiple ways to deploy Hercules:
 - User level space

hercules start -s 0 -m /hercules/metadata -d /hercules/data -f
/hercules/conf/hercules.conf

Slurm

hercules start -f /hercules/conf/hercules.conf

Docker containers

Hands-on (Docker containers)

Download images from DockerHub

docker pull arcosuc3m/hercules_server
docker pull arcosuc3m/hercules_client

Running both data and metadata servers in the same container:

docker run -name hercules_server --network="host"

arcosuc3m/hercules server

Share dynamic ports

Hands-on (Docker containers)

Running some client commands

/mnt/hercules/test

Future work

- Malleability:
 - Current efforts by modifying existing pools for controlling data location.
- Monitoring
 - Performance metrics already gathered (i.e., memory bandwidth, network bandwidth).
- QoS
 - Degrade performance in presence of application computing peaks.
 - Memory usage.

Hercules: scalable and network portable in-memory ad-hoc file system for data-centric and highperformance applications

Javier Garcia-Blas and Jesus Carretero

University Carlos III of Madrid, Spain

fjblas@inf.uc3m.es

ADAPTIVE MULTI-TIER INTELLIGENT DATA MANAGER FOR EXASCALE

ADMIRE Users Day - Barcelona