
Adaptive multi-tier intelligent data 
manager for Exascale

Barcelona, Dec. 2023

 

ADMIRE - Lustre and Quality of Service
Jean-Thomas Acquaviva – DDN Storage

Workpackage leader

December 11-12  2023. 

Grant Agreement number: 956748 — ADMIRE — H2020-JTI-EuroHPC-2019-1

admire-eurohpc.eu



Torino Infrastructure

2



Handling Demanding and Complex Jobs

Compute nodes

Lustre (4 full flash servers)

Complicated 
Job  

Burst of badly 
formed IO

Simple Job 
(IO wise)



Node Specialization: ADMIRE IO Optimized Module

4

IO Optimized Module Compute partition

data mover service

Lustre (4 full flash servers)

well formed I/O

ADMIRE 
provides
SLA for

data mover

Complicated 
Job

Simple Job 
(IO wise)

Complicated jobs are better 
handled locally
Simple jobs are shield from 
complicated jobs



A single deviant job can degrade system throughput 

5

IO Optimized Module Compute partition

data mover service

Lustre (4 full flash servers)

well formed I/O

ADMIRE 
provides
SLA for

data mover

Complicated 
Job

Simple Job 
(IO wise)

Bad Job 
(IO wise)

Not all jobs will be ported 
to the IO optimized module



Improving Performance Resilience at FS level

 



Quality of Service Goals

7

1. Guarantee that all jobs are served fairly
○ Prevent starvation or denial of service
○ Ensure that all jobs are served in accordance with available resources

2. Use all available resources
○ Allows jobs to consume all the available resources

3. Support SLA
○ Distinction between Jobs (production constraints)



Issue #1 Starvation

8

Job 1 and 2 are squeezed due 
to apparition of additional jobs 
on the system 

#1 Assign a minimal fraction of 
resource to each job



Issue #2 Loss of efficiency

9

Capping the consumption per 
job leads to suboptimal usage 
of resources



Type of QoS in Lustre

10

● Interconnect
○ e.g: Infiniband QoS (with the concept Virtual Lane and Service Lane)
○ Prevent starvation
○ Does not fully optimize resource usage

● LNet
○ Multi-Rail health algorithm: use to depreciate the usage of a local or remote 

interface if it return a lot of error. 
○ Multi-Rail User Defined Selection Policy (UDSP): allow policies for local/remote 

interface prioritization by NID
● Token bucket filter (TBF)

○ Allow the administrator to define rules to enforce the RPC rate limit on it
○ Initiated in 2014… finalized in ADMIRE! 



Token Bucket Filter (TBF) 

11

○ Allow the administrator to define rules to enforce the RPC rate limit on it.
○  NRS (Network Request Scheduler) is able to reschedule/resort/throttle the RPCs 

before forwarding them to the handling threads on MDS/OSS 
○ TBF (Token Bucket Filter) is the policy that enables NRS to enforce RPC rates by 

user defined rules on some users/groups/nodes/jobs 
○ Taking nominal RPC rate processing of the File system

■ Sysadmin define fraction of the rate using TBF filters
 



Token Bucket Filter (TBF) - Supported filters

12

○ TBF policies (to activate via parameter nrs_policies of a service): 
○ "tbf jobid": enforce a rate for each unique jobid. 
○ "tbf nid": enforce a rate for each unique network node. 
○ "tbf uid"/"tbf gid": enforce a rate for each unique process UID or GID. 
○ "tbf opcode": enforce a rate for each unique type of RPC request. 
○ "tbf": enforce a rate for each unique id constructed with RPC jobid, NID, UID, 

GID and opcode 



TBF Logic: RPC queue management

13

● Filter rules applies when queues are congested
○ Ensure full resource allocation when activity is limited



Fair Share: Silenting the Noisy Neighbour

14

 

Resources are fully utilized and 
all jobs obtains 20% of the 
system



Issue #3 Fair Share: flat hierarchy

15

Job 1 needs at least 20% to 
finish on time. It will run late due 
to too many active jobs in the 
system



Introducing new kind of job: Real Time

Job 1 is guaranteed to receive 
needs at least 20% of resources 
independently of the number of 
active jobs



Integration: self contained data logistic

17

TBF Activation on  jobid for data service (ost_io)

○ lctl set_param ost.OSS.ost_io.nrs_policies="tbf jobid"

Limit bandwidth for read and write to 3000 RPC/sec 
○ if payload is 1MB, bandwidth is capped at 3GB/s, if payload is 16MB bandwidth is capped at 48 GB/S
○ lctl set_param ost.OSS.ost_io.nrs_tbf_rule="change default rate=3000"

Set bandwidth limit to a specific job

○ lctl set_param ost.OSS.ost_io.nrs_tbf_rule="start rule_fio jobid={fio.*} rate=5000"

Mark a job as belonging to the Real Time Class

○ lctl set_param ost.OSS.ost_io.nrs_tbf_rule="start rule_fio jobid={ior.*} minrate=1000 

rate=5000 realtime=1"



Lustre QoS: Rate Calibration

18

lctl set_param ost.OSS.ost_io.nrs_tbf_rule="change default rate=3000"

– Rate depends on file system capabilities
○ Micro-benchmarking file system peak performance 
○ RPC based but not all RPCs have the same wait

■ Depends on the payload
■ Write costlier than Read

– Rate has to be estimated
○ Does not depends only on FS capabilities

■ Network and Compute nodes impact overall RPC rate

– Pragmatic approach based on trial/error (fine tuning)



Who’s launching the command?

19

On every service (data server OSS)

○ #clush -w fast[1-4] lctl set_param ost.OSS.ost_io.nrs_policies="tbf jobid"

Root access needed 
○ Only admin can assign resource to jobs
○ lctl set_param ost.OSS.ost_io.nrs_tbf_rule="change default rate=100"

Integration with job scheduler much needed
○ Current test on Torino cluster where conducted with manual setting

Writing rules can be complex

○ lctl set_param  ost.OSS.ost_io.nrs_tbf_rule="start comp_rule 

opcode={ost_write}&jobid={dd.0},nid={192.168.1.[1-128]@tcp 0@lo} rate=100"



Coupling TBF with notification mechanism

20



Lustre QoS

21

– Software Quality of Service
○ Maximise usage of resources
○ Provide Fair Share
○ Does not replace Hardware-based ADMIRE Ephemeral File System

■ EFS improve performance, QoS guarantees performance

– Hierarchy of Service
○ Creation of an extra-category does not close the conceptual issue

■ Production oriented work-around

– Require Policy definition and Scheduler integration
○ Rules have to be dynamically changed in function of the server loads 

(feedback loop) 

– Code made Open-Source



22

THANKS!

QUESTION?


