
H2020-JTI-EuroHPC-2019-1

Project no. 956748

ADAPTIVE MULTI-TIER INTELLIGENT DATA MANAGER FOR
EXASCALE

D4.2
Software to support I/O scheduling policies

Version 1.2

Date: July 28, 2023

Type: Deliverable
WP number: WP4

Editor: Alberto Miranda
Institution: BSC

Project co-funded by the European Union Horizon 2020 JTI-EuroHPC research and innovation
programme and Spain, Germany, France, Italy, Poland, and Sweden

Dissemination Level
PU Public

√

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)



ADMIRE

Change Log

Rev. Date Who Site What

1 16/05/23 Jesus Carretero UC3M Document creation.

2 18/06/23 Alberto Miranda BSC Establish document structure.

3 23/06/23 Alberto Miranda BSC Add Executive summary.

4 27/06/23 Alberto Miranda BSC Add Introduction.

5 03/07/23 Alberto Miranda BSC Add I/O Scheduler: Design.

6 05/07/23 Alberto Miranda BSC Restructure document. Add initial text for
I/O Scheduler: Implementation.

7 10/07/23 Luan Teylo INRIA Add IO-Sets in Section 4

8 10/07/23 Alberto Miranda BSC Minor rewrites of Introduction and Design
chapters. Text for Slurm extensions.

9 11/07/23 Alberto Miranda BSC Finalise text for Slurm extensions.

10 12/07/23 Alberto Miranda BSC Add text for scord service in Section 3.

11 12/07/23 Maysam Rahmanpour JGU Add initial results for Cargo data transfers
in Section 3.3.4.

12 12/07/23 Ramon Nou BSC Add text QoS Control in for scord service in
Section 4.

13 13/07/23 Alberto Miranda BSC Revise and finalise Section 3.1. Initial text
for Section 3.3,Minor improvements to sev-
eral sections. Finalise description of the
Cargo service. Add scord API examples. Add
Cargo API examples.

14 14/07/23 Ahmad Tarraf TUDA Added FTIO description in Section 4.3

15 14/07/23 Marc-André Vef JGU Revise and finalise Section 3.3.4.

16 17/07/23 Alberto Miranda BSC Add API examples. Add figure for I/O Sched-
uler design components. Add figure for I/O
Scheduler software components.

17 18/07/23 Francieli Boito INRIA Add to the integration of IO-Sets with QoS
control in Section 4.1.3; complete the de-
scription of FTIO and elaborate on its in-
tegration with other components in Sec-
tion 4.3; add links to the IO-Sets and FTIO
pre-prints.

18 18/07/23 Alberto Miranda BSC General revision. Minor changes.

19 20/07/23 Clément Barthelemy INRIA Add details about IO-Sets in BeeGFS.

20 25/07/23 Hamid Fard TUDA Full review.

21 27/07/23 Jean-Baptiste Besnard PARA Document review.

22 27/07/23 Alberto Miranda BSC Integration of comments from reviewers.

1



Executive Summary

Within ADMIRE, ad-hoc storage systems are dynamic, ephemeral services that are deployed per
job and that take advantage of node-local storage devices (such as SSDs) to accelerate the I/O
performance of scientific applications. This performance benefit emerges, firstly, as a result of
forcing applications to use node-local storage as much as possible and, secondly, by carefully
managing and orchestrating any eventual accesses to the HPC cluster’s parallel file system (PFS).
To facilitate ad-hoc storage systems as first-class citizens of a service-oriented HPC architecture,
the ADMIRE framework defined a core component, the I/O Scheduler, as the entity responsible
for orchestrating the tasks required to achieve this goal. As such, the I/O Scheduler is responsible
for coordinating with Slurm to deploy ad-hoc storage services on demand, automatically capture
information from users about I/O requirements, and decide when data should be staged into (or
out of) an already deployed service.

While, conceptually, the I/O Scheduler is a single component of the ADMIRE framework, from
an implementation point of view it is composed of several sub-components. Thus, while D4.1
focused on describing the overall interactions between the different ADMIRE components and
the I/O Scheduler, this prototype deliverable, D4.2, describes the software developed (and under
development) to actually enable the ADMIRE ecosystem of I/O microservices while supporting
those interactions and enabling I/O scheduling policies. The work described in this report was
developed in the context of T4.2 and up to M28 of the project.
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ADMIRE Introduction

1. Introduction

The design of large-scale HPC infrastructures traditionally focused on maximising parallel pro-
cessing power but the advent of data-intensive computing applications, such as high-performance
data analytics (HPDA) and deep learning (DL), is changing this compute-centric approach. As a
result, there is a growing agreement in the HPC community that large-scale supercomputers will
act as key data processing nodes in the emerging distributed computing environment integrating
HPC and data-intensive computing resources [1,9].

This growing demand for data processing is accompanied by the disruptive technological
progress of the underlying storage technologies. As a result, upcoming exascale HPC systems
are transitioning from a simple HPC storage architecture, consisting of a parallel backend file
system and archives often based on tapes, towards a multi-tier storage hierarchy that includes
node-local non-volatile main memory (NVMM) with a performance close to DRAM, NVMe-based
SSDs inside compute nodes with a bandwidth of many GBytes/s, SSDs on I/O nodes, parallel
file systems, campaign storage, and archival storage (see Figure 1.1). Unfortunately, there is a
significant lack of interfaces for managing this I/O stack, and application access to the different
I/O tiers is not considered in any scheduling decision. Data transfers between storage tiers are,
therefore, managed explicitly by users. This often leads to uncoordinated I/O accesses, redundant
data movement, increased energy consumption, and delayed end-to-end performance.

To address these issues, ADMIRE proposes an architecture where applications do not access
the shared PFS directly but rather rely on dedicated ad-hoc storage systems for all their I/O needs.
Ad-hoc storage systems are I/O microservices that can dynamically virtualise an application’s
on-node local storage by aggregating it to construct extremely fast burst buffer storage systems
for a single application [4]. Since ad-hoc storage systems can be rapidly deployed on demand, they
allow the efficient and transparent implementation of per-job storage tiering in an HPC cluster. By
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Figure 1.1: The complexity of the storage hierarchy in modern HPC systems.
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Figure 1.2: Information flow within the ADMIRE framework. The Intelligent Controller acts as the
nexus point for collecting, processing and distributing all the information required for the proper
functioning of the ADMIRE.

moving an application’s I/O access from the PFS to an ad-hoc storage service, the application’s
data locality is improved and the PFS’ I/O congestion is reduced.

To support this vision, data movements between the PFS and the ad-hoc storage services need
to be carefully orchestrated. To this end, WP4 is developing an I/O Scheduler component that
will coordinate and schedule the data flows between the shared backend parallel file system and
the ad hoc storage systems, executing data transfers as necessary according to the information
gathered by other components in the ADMIRE framework.

1.1 The ADMIRE architecture

To fulfil its responsibilities, the I/O Scheduler must necessarily collaborate with other components
in the ADMIRE framework. To clarify these interactions, Figure 1.2 depicts how the consortium
currently envisions the flow of information in the framework, and the place the I/O Scheduler
has in it. The HPC storage subsystem is represented in the upper part of the figure and consists
of the Ad-hoc and Backend Storage Systems. The former provides each application with a
specialised high-performance storage tier tailored to the application’s characteristics, while the
latter represents the main parallel file system used by the HPC platform (e.g. Lustre, GPFS, etc.).
As mentioned, these storage tiers are coordinated by the I/O Scheduler, which is responsible for
the deployment and configuration of the ad-hoc storage, the specification of Quality-of-Service
metrics and the implementation of I/O and data scheduling policies. To make appropriate decisions,
the I/O Scheduler requires information about the current state of the HPC system and the expected
I/O from applications, information which comes primarily from the Job Scheduler, the Malleability
Manager, and the applications themselves via specialised APIs:
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• The Job Scheduler (i.e. Slurm) is the front-end component with which end users interact to
execute their applications. As such, its main responsibilities in the context of WP4 are to
keep track of the current workload of the system (e.g. job queue state in the figure), as well
as to collect user hints about an application’s I/O and datasets.

• The Malleability Manager (WP3) is the component in the ADMIRE framework responsible for
providing elasticity in the allocation of resources for a job. As such, it will be responsible for
making decisions that imply dynamically altering the amount of resources assigned to a job.

• Applications (WP7) themselves are also able to communicate additional information about
an application I/O by making use of specialised APIs provided by the framework. This
information can be really valuable for the framework since it will come from application
developers themselves rather than from end users. Nevertheless, note that obtaining
this information requires application code to be modified, which means that the ADMIRE
framework cannot rely on having this information always on hand.

Additionally, both applications and storage tiers are monitored by the Sensing and Profiling
framework, which is responsible for collecting system-wide performance metrics that are pro-
cessed and aggregated by the Monitoring Manager (WP5) to produce performance models for
these resources. All this information is collected by the Intelligent Controller (WP6) that uses it
to predict potential performance bottlenecks in the system. This means that the main source of
information for the I/O Scheduler to perform its tasks will be the Intelligent Controller.

This document is organised as follows: Section 2 describes the I/O Scheduler requirements
and its design, focusing on the abstract sub-components required to execute its responsibilities.
Section 3 discusses the software packages that actually implement the core of the component,
providing instructions to build and install them and usage instructions. Finally, Section 4 describes
additional support software that is going to be integrated to provide the control logic of the
component.
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2. The I/O Scheduler

The main responsibility of ADMIRE’s I/O Scheduler is to orchestrate the movement of datasets
(i.e. files or objects) between the PFS and the deployed ad-hoc storage services with the goals of
(1) accelerating data processing (due to increased data locality); and (2) reducing I/O contention
to the PFS. I/O contention in the PFS typically occurs due to HPC applications using it for “normal”
I/O operations (e.g. reading configuration files, reading input data, writing results, checking file
attributes, checkpointing operations, etc.). The I/O Scheduler addresses this by appropriately
scheduling data staging into Ad-hoc Storage Systems, combined with defining and enforcing per
application QoS constraints: a proper orchestration of data movements changes PFS I/O into
well-defined streams of sequential read-only or write-only operations, while QoS enforcement
makes it so that a single application cannot overwhelm the PFS and its I/O capabilities can be
distributed fairly.

Thus, the I/O Scheduler implementation offered by ADMIRE has the following requirements:

1. The I/O Scheduler will take into account how data is going to be accessed, and give a higher
priority to data shared by several compute nodes to reduce contention as much as possible.

2. The I/O Scheduler will offer mechanisms to support the definition and enforcement of QoS
constraints for an application I/O. This means that it must be possible to set limits on e.g.
the number of metadata operations, the number of I/Os per second (IOPS), or the bandwidth
consumed w.r.t. the shared PFS.

3. The I/O Scheduler will support multiple storage tiers, including at least the backend parallel
file system, node-specific flash storage, and Storage Class Memory attached to the CPUs’
memory buses. It will also allow scheduling bulk data transfers between the different storage
tiers and will manage fine-grained accesses from one storage tier to another, honouring the
aforementioned QoS guarantees.

4. The I/O Scheduler will include several data scheduling policies with different levels of
aggressiveness, given that applications may benefit differently from each policy.

Additionally, the ADMIRE partners also decided that the I/O Scheduler should be responsible
for executing all tasks related to deploying and terminating Ad-hoc Storage Systems in response to
requests by Slurm. This is required, firstly, so that it is possible to stage data into them. Secondly,
the Ad-hoc Storage System may be kept running for subsequent jobs in a workflow. And thirdly, it
may also be necessary to complete any pending data transfers from the Ad-hoc Storage System to
the PFS once all jobs have been completed. Since the I/O Scheduler will have first-hand knowledge
of when these transfer tasks are complete, it is simpler to let it take care of this.

2.1 Requirements

For the I/O Scheduler to enable better usage of the HPC cluster’s I/O stack, it needs to be able to
capture information from end users’ I/O usage, as well as to offer a set of particular functionalities
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to successfully play its part in the ADMIRE framework. This section describes these requirements
in detail.

2.1.1 Definition and capture of user information and I/O hints

Clients of the ADMIRE framework must be able to define I/O requirements for applications,
either when requesting resource allocations or via specialised ADMIRE APIs. To this end, the I/O
Scheduler must expose an API that allows the materialisation of I/O hints in the Job Scheduler.
The following I/O parameters will be captured by Job Scheduler and communicated to the I/O
Scheduler:

• Datasets to stage-in: This hint allows users of the framework to identify which datasets
will be consumed by a job to produce meaningful results. This is needed by the I/O Scheduler
to kickstart the transfer process from the PFS into the desired ad-hoc storage system so that
data can be on location before the job requires it.

• Datasets to stage-out: This hint allows users of the framework to identify the datasets that
are expected to be generated from an HPC job, as well as the location in the PFS where they
should be written for long-term storage. This will be helpful to the I/O Scheduler in several
ways: firstly, intermediate datasets produced by a job within an Ad-hoc Storage System
that has not been tagged for PFS storage will be considered as temporary by default, being
deleted when the job completes; secondly, it will allow the I/O Scheduler to determine what
to do with the produced datasets, i.e., transfer them to the PFS for persistent storage or
keep them in place/move them to other compute nodes for subsequent job executions.

• Storage tiers: The previous two arguments must include information that allows users
to unequivocally specify the storage tiers where datasets reside. This will allow routing
information for data transfers to be precisely defined and enforced.

• I/O access patterns and modes: This hint will allow users to define if a dataset will be
used in a read-only, write-only, read-write, or read-modify-write manner. Additionally, it will
also be possible to define whether a dataset is intended to be privately consumed or shared
by several applications.

2.1.2 Definition and enforcement of QoS constraints

The goal of Quality of Service in ADMIRE is to throttle I/O performance to prevent the excessive
allocation of I/O resources to a single process/group of processes, to avoid diminished performance
due to starvation for the remaining active process in the system. As mentioned, the management
of Resources in Job Schedulers (both Slurm or PBS) typically takes care of a fair allocation of
system resources such as computation and memory but typically excludes the I/O [11]. This
situation can be somewhat mitigated by the ability of some storage systems to cap the available
capacity (per user or group/project) using quotas, but this feature misses the control of data and
metadata traffic during a time frame.

These limitations have been acknowledged by the Lustre community and a more complete QoS
implementation is under development. This implementation, often referred to as LIME [15], is
based on the notion of a Token Bucket Filter (TBF), which allows controlling the rate of network
service from the storage servers based on the client’s identity. As Lustre is a network-attached file
system, all demands both in terms of data and metadata are expressed by RPCs to storage servers
from compute clients. Nevertheless, the lack of orchestration remains one of the main difficulties
for delivering QoS for a PFS, since each server only has partial knowledge of the consumption
of resources. The I/O Scheduler addresses this by offering a central control point to facilitate
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this orchestration. With a centralised controller, it is possible to leverage the existing LIME
mechanism in Lustre to guarantee a level of resource to specific processes. Thus, to implement
this orchestration effectively, it is mandatory for the I/O Scheduler to model both QoS classes and
constraints to enforce them when transferring datasets back and forth to or from the PFS.

Note that we consider that the target of a QoS class/constraint can be a dataset, a compute
node or an application. We currently envision that the following QoS classes will need to be
supported:

• I/O Data Rate: The data rate QoS class allows restricting the amount of data transferred
between storage devices during a certain unit of time. This QoS class allows setting upper
limits to the I/O bandwidth used by an application, which is intended to prevent an application
with high data production from saturating the I/O channel.

• I/O Operation Rate: The operation rate QoS class allows restricting the number of oper-
ations per unit of time being emitted. This, for instance, allows restricting the metadata
IOPs emitted by an application, which is often the cause of increased I/O latency for HPC
applications.

Note that in D4.1 we also defined a network data rate QoS class. Unfortunately, we were
unable to find established mechanisms to enforce it that could be easily integrated into the I/O
Scheduler prototype. For now, development pursuing this QoS class is abandoned but we will
revisit it before the project ends.

2.1.3 Execution of asynchronous data movement

The I/O Scheduler is responsible for executing and tracking data transfer tasks to move datasets
between the PFS and the ad-hoc storage services. For efficiency’s sake, it makes sense to perform
these data transfers asynchronously, so that the initiators (i.e. applications and other ADMIRE
components) don’t need to wait for the transfers to be completed and may carry on with other
tasks.

2.2 Architecture

This section describes the architecture of the I/O Scheduler component. To do so, we describe
each sub-component while focusing on its desired functionalities. This allows us to determine the
requirements for each sub-component and the interactions between them.

2.2.1 Design principles

As with other components in the framework, the I/O Scheduler follows ADMIREs principle of
separation of concerns: the control flows and the data flows are strictly separated:

• The control plane for the I/O Scheduler encompasses all the messages transferred between
the different ADMIRE components and the I/O Scheduler, as well as all internal messages
exchanged between the I/O Scheduler sub-components. As mentioned, I/O requirements
relevant to the I/O Scheduler are captured from applications via a Slurm-specific interface
or a specific ADMIRE API (refer to Section 3.1.3 and Section 3.2), and are collected, pro-
cessed, and analysed by the Intelligent Controller, which also receives relevant Malleability
information from the Malleability Manager and incorporates it into the model. From there,
this digested information is pushed regularly to the I/O Scheduler, so that it can be used to
implement decisions via internal messages (i.e. RPCs) to its sub-components. As we will see
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later, all sub-components in the I/O Scheduler report and react only to commands coming
from the I/O Scheduler Coordinator, which is the sole contact point for the Intelligent Con-
troller. This simplifies development and testing significantly (allowing us to implement and
develop the Coordinator in commodity hardware), and also has the benefit of establishing
clear boundaries and communication channels between ADMIRE components.

• The data plane, on the other hand, refers to all the I/O requirements (and derived models)
required to implement its functionalities and is significantly simpler than the control plane.
In ADMIRE, I/O requirements can be collected directly from users via the ADMIRE Slurm
extensions, and from running applications via the ADMIRE programmatic API. Any derived
models originate from data collected by the Monitoring Manager, as well as from application
and storage states that are updated regularly. In any case, this information is collected and
processed by the Intelligent Controller, which pushes it regularly to the I/O Scheduler, so
that it is aware of the current I/O state of the system.

2.2.2 Components

To make the ADMIRE’s I/O Scheduler as flexible as possible, its responsibilities are separated into
three major sub-components as depicted by Figure 2.1: the Coordinator, the Controller, and
the Data Stager.

• The Coordinator component is a process that acts as the interface between the I/O Scheduler
and other ADMIRE components (most notably the Intelligent Controller), which means that it
implements most of the interfaces defined by D4.1. The Coordinator is the main controller
of all I/O Scheduler responsibilities, being in charge of exchanging information with the other
ADMIRE components, processing it, making decisions, and sending appropriate commands
to other I/O Scheduler sub-components. Since the Coordinator needs to oversee ADMIRE
jobs, its lifetime is not linked to any specific application, but rather needs to be started when
the ADMIRE framework is first deployed. As we will see later, the Coordinator’s actual
implementation is that of a daemon capable of running as an infrastructure node by, e.g.,
being deployed in a login node. This allows it to have a global view of the I/O requirements
of the system.

The Coordinator is also in charge of splicing and communicating application-level I/O and
data scheduling information to Controllers so that they can take it into account when
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planning their next actions. We envision that a single Coordinator daemon will suffice for
the current needs of the ADMIRE framework, but if that proved false in the future, we would
explore a distributed solution with multiple Coordinators.

• The Controllers are management processes that act as the middle-man between applica-
tions, ad-hoc storage services, and the Coordinator daemon. As such, they handle commands
from the Coordinator daemon (processing and relaying them) as needed, and also track
an application state. The design goals of this component are to reduce the workload of the
Coordinator by taking full responsibility for an application as its associated ad-hoc storage.

Controllers are processes that run alongside applications and are in charge of receiving
commands and requests from the Coordinator daemon and reacting to them. As such, there
is a Controller process per application, that will be started once the node reservation is
made available by Slurm. Before an application starts running, its Controller is in charge
of setting up its environment according to the user hints defined when the job was submitted.
This may include deploying, configuring and starting external software, such as an ephemeral
ad-hoc storage system or the ADIOS2 framework for in-situ processing, for example.

Controllers are also responsible for communicating I/O malleability requests from the
Coordinator to running ad-hoc storage services (e.g. to expand or shrink an ad-hoc service)
as well as servicing any application request coming from ADMIRE’s specialised APIs.

• The Data Stager is a process responsible for asynchronously moving data back and forth
between the ad-hoc storage services and the PFS on behalf of applications. For ADMIRE to
be successful in limiting I/O contention, applications must be constrained to work primarily
in their dedicated ad-hoc storage services, keeping them from accessing the PFS arbitrarily
as much as possible. The Data Stager offers a mechanism to applications so that they can
request transfers to/from the PFS while giving the Coordinator (and hence the ADMIRE
framework itself) control over when to execute them. From a deployment point of view, two
alternatives exist: a system-wide Data Stager or multiple per-application Data Stagers. As
we will discuss in Section 3.1, when considering the implementation details we chose the
latter since it simplifies the eventual adoption of the software.

As depicted by Figure 2.1, the I/O Scheduler workflow begins with a job submission from a
user, which allows the ADMIRE framework to capture I/O requirements for the job via Slurm. The
Intelligent Controller may now be able to generate extra information such as prediction models
for the application and information about the system state gathered by the Monitoring Manager.
All this information (I/O requirements, extended information, and system state) is forwarded via
Margo RPCs to the Coordinator, which will process it and determine if the application requires
an on-demand ad-hoc storage service. If so, a Controller will be started in the job’s allocation
which will be instructed to deploy the requested ad-hoc storage service. Once the service is
running, the Coordinator will determine the best moment to start transferring data into it, as
well as appropriate QoS constraints depending on the PFS’s current condition. Then, transfer
requests will be sent via RPCs to the Data Stager. When sufficient data is available in the ad-hoc
storage service, the parallel application can initiate its work, which may include additional transfer
requests via ADMIRE’s specialised APIs.
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3. Implementation

The abstract components described in Section 2.2.2 need to be implemented as distinct software
solutions. Figure 3.1 revisits the I/O Scheduler architecture, but this time depicting the actual
software packages that implement each sub-component of the prototype: scord, scord-ctl, and
Cargo which, respectively, implement the Coordinator, Controller, and Data Stager abstract
components. We also describe the implementation of the Slurm extensions as a Slurm plugin:
libslurmadmcli.so. This section, then, moves away from the conceptual design components
to discuss the actual software developed in WP4 to enable the ADMIRE vision of an HPC I/O
infrastructure based on ad-hoc microservices.
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Figure 3.1: Architecture of the I/O Scheduler implementation

3.1 scord: Storage management and coordination

scord1 is an open-source storage management service that provides facilities for system ad-
ministrators to easily model their storage hierarchies and expose them to users in a consistent
manner. Once the desired storage architecture is configured into scord, the service automatically
deploys on-demand ad-hoc storage services for those HPC jobs requesting them, and efficiently

1https://storage.bsc.es/gitlab/eu/admire/io-scheduler
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orchestrates data transfers between those services and the available storage tiers. In this way,
the scord service simplifies the construction of complex HPC workloads using node-local storage,
burst buffers and ad-hoc storage systems and makes careful usage of the I/O resources provided
by the infrastructure.

The scord service (a portmanteau for Storage Coordinator), is the core of ADMIRE’s I/O Sched-
uler implementation and, as such, is responsible for collecting job information and application
models from other ADMIRE components. It then uses this information to orchestrate both the
deployment of ad-hoc storage services and the data transfers required to move datasets between
storage tiers. Similarly to other components in ADMIRE, the scord service is a daemon built
around Margo RPCs2, a highly scalable RPC library from Argonne National Labs, that offers a
common interface for several HPC fabrics such as TCP, InfiniBand, Verbs, or Omni-Path. The
scord service implements the APIs defined in D4.1, which are exposed as Margo endpoints to
other components of the ADMIRE framework.

The service itself is composed of several sub-components:

• The scord server is the service’s core component and its functionalities directly correspond
to the Coordinator component described in Section 2.2.2. Thus, the scord server holds
much of the control and orchestration logic and also serves as a single point of communication
for other ADMIRE components. Its responsibilities are to internally model the I/O stack,
keep track of jobs and their requirements, execute decision-making algorithms, and send
commands to other sub-components for the deployment of on-demand ad-hoc storage services.
It is also responsible for initiating, tracking, and steering data transfers between the different
storage tiers and updating the Intelligent Controller’s REDIS database with up-to-date
information about storage tiers. Finally, it serves as a control hub for any QoS enforcement
policies such as those described in Section 2.1.23. As an overseeing component, the scord
server’s lifetime is not associated with a single application and should thus be installed and
run as an infrastructure service (e.g. a login node). The server itself does not require special
privileges for its operation.

• The scord-ctl servers are scord’s workhorses and serve as a nexus between the scord
server, ad-hoc storage services and applications. Their functionalities directly correspond
to the Controllers described in Section 2.2.2. As such, a scord-ctl server is initiated
alongside each application using a specialised prologue script (refer to Section 3.2 for details)
once the resource allocation has been granted. The scord-ctl server then establishes a
two-way communication channel with the scord server which, in the near future, will send
an RPC requesting the deployment of an ad-hoc storage service for the initiating job. When
this happens, the scord-ctl server executes the pre-configured scripts for the requested
ad-hoc type (refer to Section 3.1.2) and reports back to scord so that the user’s application
can initiate. Note that the scord-ctl server is started as a process of the requesting user,
which means that there are no issues with data ownership or permissions of execution.

• The libscord.so library and scord.h[pp] headers provide an interface for any ADMIRE

components that need to communicate with the scord server. Rather than forcing other
components to manually construct the Margo RPCs themselves, the library encapsulates
the RPC communication into a C and C++ API that closely follows the interfaces defined in
D4.1, Section 3.3. It offers administrative interfaces to register user jobs, storage tiers, and
request and manipulate data transfers. The intended clients for this library are Slurm and
the Intelligent Controller.

2https://mochi.readthedocs.io
3This functionality is currently under development

13

https://admire-eurohpc.eu/wp-content/uploads/2021/10/D4_1_admire.pdf
https://admire-eurohpc.eu/wp-content/uploads/2021/10/D4_1_admire.pdf
https://mochi.readthedocs.io


ADMIRE Implementation

• libscord-user.so library and scord-user.h[pp] headers provide a C and C++ interface
for application-specific functionalities involving the scord service. The library offers APIs,
for instance, for applications to explicitly request asynchronous data transfers while they
are running. Such transfer requests need to arrive at the scord server so that they can
be taken into account in the overall data scheduling. Other planned interfaces that will be
provided by this library are those supporting in-situ/in-transit data operations as described
in D4.1, Section 3.5, which will be available once Task 4.3 completes.

3.1.1 Building and installing

This section describes how to build and install the scord service. Two main options are basically
supported out of the box:

1. Automatically building both scord and its dependencies using Spack.

2. Building and installing scord manually.

For the sake of brevity, we only describe here the first option, since it is also significantly
simpler. The instructions to manually build and install scord are described in detail in the project’s
README.

Building with Spack

scord and all its dependencies can be built using Spack, a flexible, multi-platform, package
manager for supercomputers that can build, install, and make available multiple versions and
configurations of scientific software.

�

Installing Spack

Spack can be installed by directly cloning its official repository, which will
create a directory called spack in the user’s machine. Once Spack is cloned,
we recommend sourcing the appropriate script for the preferred shell, which
will add Spack to the PATH and enable the use of the spack command. The
following commands take care of this:

$ git clone -c feature.manyFiles=true
https://github.com/spack/spack↪→

$ . spack/share/spack/setup-env.sh # For bash/zsh/sh
$ source spack/share/spack/setup-env.csh # For tcsh/csh
$ . spack/share/spack/setup-env.fish # For fish

Since scord is not yet available in the official Spack repositories, scord’s Spack repository
needs to be manually downloaded and added to the local Spack namespace in the target ma-
chine. To do so, the /spack directory found in scord’s repository4 must be downloaded to the

target machine (e.g. under ~/projects/scord/spack ), and the following commands need to be
executed:

$ spack repo add ~/projects/scord/spack/
$ spack info scord

4https://storage.bsc.es/gitlab/eu/admire/io-scheduler/-/tree/main/spack
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If that worked, scord is now ready to be installed:

$ spack install scord

Spack can optionally be asked to run any package tests when installing the software. For
scord, tests are integrated in CTest, CMake’s testing facility, and their execution can be requested
with the following command:

$ spack install --tests=root scord

Variants can be selected with Spack in case a custom scord build is desired, including specific
options that are directly propagated to scord ’s and scord-ctl ’s configuration files. This can be
useful for system administrators who wish to configure the servers from the command line without
having to actually edit the configuration files in an interactive manner. The currently available
variants are listed below:

Variant Command Default Description

OFI +ofi True Use libfabric as transport library

UCX +ucx False Use ucx as transport library (experi-
mental)

address address ofi+tcp://127.0.0.1:52000 Specify the protocol, host and port
where scord should listen for RPCs.

For example, the following command could be used to install and configure a scord deployment
where libfabric and tcp is used for communication, and the scord server listens for requests

on address 192.168.1.128:52000 :

$ spack install --test=root scord +ofi address=ofi+tcp://192.168.1.128

�
The initial install could take a while as Spack will install build dependencies
( autoconf , automake , m4 , libtool , pkg-config , etc.) as well as any

dependencies of dependencies ( cmake , perl , etc.) if these dependencies are
not already installed through Spack.

After the installation completes, scord needs to be loaded in order to use it:

$ spack load scord
$ scord -h
scord - An orchestrator for HPC I/O activity
Usage: scord [OPTIONS] [SUBCOMMAND]

Options:
-h,--help Print this help message and exit
-f,--foreground Run in foreground
-C,--force-console Excludes: --output

Override any logging options defined in the
configuration file and send all daemon output
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to the console
-c,--config-file FILENAME Ignore the system-wide configuration file and use the

configuration provided by FILENAME
-o,--output FILENAME Write any output to FILENAME console
-v,--version Print version string and exit

3.1.2 Configuration

The configuration for both scord and scord-ctl is done using configuration files that are in-
stalled by default in $PREFIX/etc/scord.conf and $PREFIX/etc/scord-ctl.conf . The listing

below depicts the configuration options currently available for the scord server:

## global server settings
global_settings:

logfile: "/var/log/scord/scord.log" # log file
rundir: "/var/run/scord" # working directory (for pidfile, etc.)
address: "ofi+tcp://192.0.0.1:42000" # address where scord should expect requests

Conversely, the listing below depicts the settings currently available for the scord-ctl server:

config:
# Specific configurations for supported adhoc storage systems
adhoc_storage:
hercules:
...

expand:
...

gekkofs: # The tier ID presented to the user
# The default working directory for adhoc services of this type
working_directory: /tmp/gekkofs
startup:

# Specific environment variables that should be set for the adhoc
# service. These will be merged with the environment variables
# already set by Slurm.
environment:
VAR0: value0
VAR1: value1

# The command that scord-ctl will use to start an adhoc service of
# this type. The following variables are supported that will be
# automatically replaced by scord-ctl if found between curly braces:
# * ADHOC_NODES: A comma separated list of valid job hostnames that
# can be used to start the adhoc service.
# * ADHOC_DIRECTORY: A unique working directory for each specific
# adhoc service. This directory will be created by scord-ctl under
# `working_directory` and automatically removed after the adhoc
# service has been shut down.
# * ADHOC_ID: - A unique ID for the adhoc service.
command: /usr/share/scord/adhoc_services.d/gekkofs.sh

start --hosts {ADHOC_NODES} --workdir {ADHOC_DIRECTORY}
--datadir {ADHOC_DIRECTORY}/data
--mountdir {ADHOC_DIRECTORY}/mnt

shutdown:
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environment:
command: /usr/share/scord/gekkofs.sh stop --workdir {ADHOC_DIRECTORY}

# default storage tiers made available to applications
storage:
lustre:
type: "pfs"
mountpoint: "/mnt/lustre"

This configuration file is especially interesting because it demonstrates how the scord-ctl
server supports the deployment of different ad-hoc storage services: any ad-hoc storage implemen-
tation that wishes to be integrated into the ADMIRE framework needs to provide one (or several)
scripts implementing several control commands (e.g. start , stop , or expand , among others).

By honouring this interface, the scord-ctl server can deploy and control widely different ad-hoc
storage services without having to actually know any specific details about the services themselves:
the actual logic is provided by the ad-hoc developers in the provided scripts.

Moreover, the scord service further leverages this API to support the deployment of concur-
rently running ad-hoc storage services even in the same compute nodes: the configuration file
defines the template for each control command and the scord service simply generates different ar-
guments for each independent service (e.g. separate working directories with ADHOC_DIRECTORY ,
unique ad-hoc identifiers with ADHOC_ID , etc.). The example below demonstrates how scord-ctl
generates specific startup command so that two concurrently running ad-hoc storage services can
be deployed in overlapping compute nodes:

#################################################################################
# The following variables are generated by `scord` and `scord-ctl` for each
# service: ADHOC_ID, ADHOC_NODES, ADHOC_DIRECTORY
#################################################################################

### First ad-hoc service: GekkoFS
ADHOC_NODES="tux[1,3-4],snoo[1-2]" # Based on SLURM_JOB_NODELIST
ADHOC_ID="gekkofs-iHRFGlekPYM41RjXUEC9j9gI7jnmDyuw"
ADHOC_DIRECTORY="/tmp/gekkofs/gekkofs-iHRFGlekPYM41RjXUEC9j9gI7jnmDyuw"

# Command eventually executed (variables applied to `scord-ctl.conf` template)
/usr/share/scord/adhoc_services.d/gekkofs.sh

start --hosts "tux[1,3-4],snoo[1-2]"
--workdir "/tmp/gekkofs/gekkofs-iHRFGlekPYM41RjXUEC9j9gI7jnmDyuw"
--datadir "/tmp/gekkofs/gekkofs-iHRFGlekPYM41RjXUEC9j9gI7jnmDyuw/data"
--mountdir "/tmp/gekkofs/gekkofs-iHRFGlekPYM41RjXUEC9j9gI7jnmDyuw/mnt"

### Second ad-hoc service: Hercules
ADHOC_NODES="tux[1,3-10],snoo[4-8]" # Based on SLURM_JOB_NODELIST
ADHOC_ID="hercules-X4fpMR9HHraYIt83jtqAkY6y5hTSUGG"
ADHOC_DIRECTORY="/tmp/hercules/hercules-X4fpMR9HHraYIt83jtqAkY6y5hTSUGG"

# Command eventually executed (variables applied to `scord-ctl.conf` template)
/usr/share/scord/adhoc_services.d/hercules.sh

start --hosts "tux[1,3-10],snoo[4-8]"
--workdir "/tmp/hercules/hercules-X4fpMR9HHraYIt83jtqAkY6y5hTSUGG"

As shown by the example, both scord and scord-ctl ensure that each ad-hoc storage
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service is assigned a unique identifier and is started on separate directories. Note that the script
invocations for each service are not identical: this is intentional to give developers a certain
leeway on the arguments they need as long as they are based on the provided information. The
design for the interface allowing this functionality was led by WP2 following a co-design effort
with other WPs and is described in detail in D2.1.

Testing the configuration

To test that everything works as it should, the service can be started by running scord server in
foreground mode and redirecting its logging output to the console with the following command:

$ scord -f --force-console
[2023-07-11 16:06:51.320162] [scord] [0743] [info] ================================
[2023-07-11 16:06:51.320171] [scord] [0743] [info] Starting scord daemon (pid 0743)
[2023-07-11 16:06:51.320173] [scord] [0743] [info] ================================
[2023-07-11 16:06:51.320174] [scord] [0743] [info]
[2023-07-11 16:06:51.320174] [scord] [0743] [info] [[ Configuration ]]
[2023-07-11 16:06:51.320182] [scord] [0743] [info] - running as daemon?: no
[2023-07-11 16:06:51.320196] [scord] [0743] [info] - address for remote requests:

"ofi+tcp;ofi_rxm://192.18.0.128:52000"↪→

[2023-07-11 16:06:51.320197] [scord] [0743] [info]
[2023-07-11 16:06:51.320198] [scord] [0743] [info] [[ Starting up ]]
[2023-07-11 16:06:51.320199] [scord] [0743] [info] * Installing signal handlers...
[2023-07-11 16:06:51.320251] [scord] [0743] [info]
[2023-07-11 16:06:51.320253] [scord] [0743] [info] [[ Start up successful, awaiting

requests... ]]↪→

Now we can use the ADM_ping program distributed with scord to send a ping RPC to the

server scord :

$ ADM_ping ofi+tcp://192.168.0.128:52000

The server logs should update with an entry similar to the following one:

[2023-07-11 16:08:12.299] [scord] [0743] [info] rpc => id: 1 name: "ADM_ping" from:
"ofi+tcp;ofi_rxm://192.18.0.128:32825" body: {}↪→

[2023-07-11 16:08:12.299] [scord] [0743] [info] rpc <= id: 1 name: "ADM_ping" to:
"ofi+tcp;ofi_rxm://192.18.0.128:32825" body: {retval: ADM_SUCCESS}↪→

Once finished, the server can be stopped either by pressing Ctrl+C or when receiving a
SIGTERM signal:

^C
[2023-07-11 16:09:26.448] [scord] [0743] [warning] A signal (SIGINT) occurred.
[2023-07-11 16:09:26.552] [scord] [0743] [info] ===================================
[2023-07-11 16:09:26.552] [scord] [0743] [info] Stopping scord daemon (pid 0743)
[2023-07-11 16:09:26.552] [scord] [0743] [info] ===================================
[2023-07-11 16:09:26.552] [scord] [0743] [info] * Stopping signal listener...
[2023-07-11 16:09:26.552] [scord] [0743] [info]
[2023-07-11 16:09:26.552] [scord] [0743] [info] [Stopped]
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3.1.3 API examples

This section shows some examples of how the libscord.so and libscord-user.so APIs can
be used to interact with a running scord service. Once again, we only demonstrate the C API,
but the C++ API functionalities are analogous. Since the examples are necessarily brief, we
urge the reader to peruse the scord.h and scord-user.h headers, as well as to look into the
/examples directory in scord’s repository.

Administrative API

The listing below demonstrates how the libscord.so library can be used to register an upcoming
job requiring an ad-hoc storage system into the scord service. Note that this is an administrative-
level library that is intended to be used by internal ADMIRE components such as Slurm or the
Intelligent Controller. The job’s owner must have provided some basic information about the
desired ad-hoc service, as well as the datasets used as input and the datasets to be generated.
This code is very similar to the one we use in the codeslurm_spank_user_init() function in the
Slurm SPANK plugin whenever a new job submitted from srun , sbatch , or salloc is detected
(see Section 3.2).

1 /**
2 * Register a new job in the system.
3 *
4 * @param adhoc_name The alias of the ad-hoc storage to be used by the job.
5 * @param adhoc_type The type of adhoc storage to be used by the job.
6 * @param adhoc_walltime The walltime of the adhoc storage used by the job.
7 * @param adhoc_nodes The nodes to be used by the adhoc storage.
8 * @param nadhoc_nodes The number of nodes to be used by the ad-hoc storage.
9 * @param job_nodes The nodes of the job.

10 * @param njob_nodes The number of nodes of the job.
11 * @param inputs The input datasets for the job.
12 * @param ninputs The number of input datasets for the job.
13 * @param outputs The output datasets for the job.
14 * @param noutputs The number of output datasets for the job.
15 */
16 void
17 register_job(const char* adhoc_name,
18 ADM_adhoc_storage_type_t adhoc_type, int adhoc_walltime,
19 ADM_node_t adhoc_nodes[], size_t nadhoc_nodes,
20 ADM_node_t job_nodes[], size_t njob_nodes,
21 ADM_dataset_t inputs[], size_t ninputs,
22 ADM_dataset_t outputs[], size_t noutputs) {
23

24 const char* scord_address = "ofi+tcp://192.18.0.128:52000";
25 const char* scordctl_address = "ofi+tcp://192.18.0.4:42000";
26 ADM_return_t ret = ADM_SUCCESS;
27 ADM_server_t server = NULL;
28

29 // adhoc information
30 ADM_adhoc_resources_t adhoc_resources;
31 ADM_adhoc_context_t adhoc_ctx;
32 ADM_adhoc_storage_t adhoc_storage;
33

34 // job information
35 ADM_job_t job = NULL;
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36 ADM_job_resources_t job_resources = NULL;
37 ADM_job_requirements_t job_reqs = NULL;
38 uint64_t slurm_job_id = 42;
39

40 // Let's prepare all the information required by the API calls.
41 // ADM_register_job() often requires an adhoc storage to have been
42 // registered onto the system, so let's prepare first the data required
43 // to call ADM_register_adhoc_storage():
44 // 1. the adhoc storage resources
45 if((adhoc_resources = ADM_adhoc_resources_create(adhoc_nodes,
46 nadhoc_nodes)) == NULL) {
47 fprintf(stderr, "Fatal error preparing ad-hoc resources\n");
48 abort();
49 }
50

51 // 2. The adhoc storage execution context
52 if((adhoc_ctx = ADM_adhoc_context_create(
53 scordctl_address, ADM_ADHOC_MODE_SEPARATE_NEW,
54 ADM_ADHOC_ACCESS_RDWR, adhoc_walltime, false)) == NULL) {
55 fprintf(stderr, "Fatal error preparing adhoc context\n");
56 abort();
57 }
58

59 // All the information required by the ADM_register_adhoc_storage() API is
60 // now ready. Let's actually contact the server:
61 // 1. Find the server endpoint
62 if((server = ADM_server_create(scord_address)) == NULL) {
63 fprintf(stderr, "Fatal error creating server\n");
64 abort();
65 }
66

67 // 2. Register the adhoc storage
68 if((ret = ADM_register_adhoc_storage(server, adhoc_name, adhoc_type,
69 adhoc_ctx, adhoc_resources,
70 &adhoc_storage)) != ADM_SUCCESS) {
71 fprintf(stderr, "ADM_register_adhoc_storage() failed: %s\n",
72 ADM_strerror(ret));
73 abort();
74 }
75

76 // Now that we have an existing ad-hoc storage registered into the
77 // system, let's prepare all the information for actually registering the
78 // job with ADM_register_job():
79 // 1. the job's resources
80 if((job_resources = ADM_job_resources_create(job_nodes, njob_nodes)) ==
81 NULL) {
82 fprintf(stderr, "Fatal error preparing job resources\n");
83 abort();
84 }
85

86 // 2. the job's requirements
87 if((job_reqs = ADM_job_requirements_create(
88 inputs, ninputs, outputs, noutputs, adhoc_storage)) == NULL) {
89 fprintf(stderr, "Fatal error preparing job requirements\n");
90 abort();
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91 }
92

93 // All the information required by the ADM_register_job() API is now ready.
94 // Let's actually contact the server:
95 if((ret = ADM_register_job(server, job_resources, job_reqs, slurm_job_id,
96 &job)) != ADM_SUCCESS) {
97 fprintf(stderr, "ADM_register_job() failed: %s\n", ADM_strerror(ret));
98 abort();
99 }

100

101 char* adhoc_storage_path;
102 // We can now request the deployment to the server
103 if((ret = ADM_deploy_adhoc_storage(server, adhoc_storage,
104 &adhoc_storage_path)) != ADM_SUCCESS) {
105 fprintf(stderr, "ADM_deploy_adhoc_storage() failed: %s\n",
106 ADM_strerror(ret));
107 abort();
108 }
109

110 // At this point, we have registered into scord a job's initial information
111 // and we can let the job execute...
112 }

Application-level API

The listing below demonstrates how applications can use the libscord-user.so library to
request data transfers from the cluster’s configured lustre storage tier, to the gekkofs ad-hoc
storage service requested by the application upon submission. Please note that this library is
currently under development and the final API may vary:

1 /**
2 * User transfer example: Data transfers can be requested using the
3 * ADM_transfer_datasets() interface. If successful, the call returns
4 * an `ADM_transfer_t` handle that clients may use to check the
5 * status of an ongoing data transfer using `ADM_transfer_wait()`.
6 *
7 * Supporting types and macros are provided: `ADM_transfer_status_t`,
8 * `ADM_TRANSFER_SUCCEEDED`, `ADM_TRANSFER_FAILED`,
9 * `ADM_TRANSFER_PENDING`, `ADM_TRANSFER_IN_PROGRESS`

10 */
11 void
12 transfer_example() {
13 const char* paths[N] = {"input00.dat", "inpu01.dat", "input02.dat",
14 "input03.dat", "input04.dat"};
15 enum { N = 5 }; // the number of files to transfer
16 ADM_dataset_t sources[N];
17 ADM_dataset_t targets[N];
18

19 for(size_t i = 0; i < N; ++i) {
20 sources[i] = ADM_dataset_create("lustre", paths[i]);
21 targets[i] = ADM_dataset_create("gekkofs", paths[i]);
22

23 if(!sources[i] || !targets[i]) {
24 abort();
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25 }
26 }
27

28 ADM_return_t ret = ADM_SUCCESS;
29 ADM_transfer_t tx;
30

31 // the library will automatically route the request to the `scord`
32 // server configured in the cluster
33 if((ret = ADM_transfer_datasets(sources, N, targets, N, &tx)) !=
34 ADM_SUCCESS) {
35 fprintf(stderr, "ADM_transfer_datasets() failed: %s\n",
36 ADM_strerror(ret));
37 abort();
38 }
39

40 ADM_transfer_status_t status;
41 do {
42 struct timespec timeout = {.tv_sec = 1, .tv_nsec = 0};
43 // Wait for the transfer to complete
44 ret = ADM_transfer_wait(tx, &status, &timeout);
45

46 if(ret != ADM_SUCCESS && ret != ADM_ETIMEOUT) {
47 fprintf(stderr, "ADM_transfer_wait() failed: %s\n",
48 ADM_strerror(ret));
49 abort();
50 }
51

52 if(ADM_TRANSFER_SUCCEEDED(status)) {
53 fprintf(stdout, "Transfer completed successfully\n");
54 } else if(ADM_TRANSFER_FAILED(status)) {
55 fprintf(stderr, "Transfer failed: %s\n",
56 ADM_strerror(ADM_TRANSFER_ERROR(status)));
57 } else if(ADM_TRANSFER_PENDING(status)) {
58 fprintf(stdout, "Transfer pending\n");
59 continue;
60 } else if(ADM_TRANSFER_IN_PROGRESS(status)) {
61 fprintf(stdout, "Transfer in progress\n");
62 continue;
63 } else {
64 fprintf(stderr, "Transfer status unknown\n");
65 abort();
66 }
67 } while(!ADM_TRANSFER_SUCCEEDED(status));
68 }

3.2 Slurm extensions

As discussed in Section 2.1.1, information about applications (and the jobs used to execute
them) needs to be made available to the I/O Scheduler components. To support this, scord
includes an extension plugin for Slurm that extends srun , sbatch , and salloc with additional
CLI arguments to capture this information. Moreover, it also adds the machinery required to
communicate Slurm with scord via the API defined in D4.1. In this way, the plugin can capture
both job information and ADMIRE I/O hints from the submission process itself, and send it to
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scord using Margo RPCs. This kickstarts all the process that allows scord to (1) register a job
and its requirements into the system; (2) prompt scord-ctl to deploy its required ad-hoc storage
service; and (3) prompt cargo to transfer data into it.

This Slurm plugin consists of a shared object ( libslurmadmcli.so ) that is loaded by Slurm’s
plugin system and serves to extend its functionalities without having to actually modify Slurm’s
code itself. It also includes some prologue and epilogue scripts5 for Slurm that are used to
prepare a job’s environment for utilisation in the ADMIRE ecosystem. The libslurmadmcli.so
shared library itself is a Slurm SPANK6 plugin that extends Slurm’s command line arguments to
enable users to provide information for scord, thus serving as a simple entry point into ADMIRE’s
automatic functionalities.

Installation and configuration

The core of the plugin is written in C and requires the libslurm.so and the libscord.so C
libraries to be compiled. It also requires access to the Slurm spank.h header. The plugin is
compiled as a shared object that is automatically loaded by the Slurm daemons and submission
programs, which gives us a fair amount of control over the different stages in a job execution.

ADMIRE’s Slurm plugin is included in scord’s distribution (under the plugins/slurm/ direc-
tory) and will be compiled by default when building the service either manually or from a Spack
recipe. If users wish to only build the plugin, they can do so with the following commands:

$ git clone https://storage.bsc.es/gitlab/eu/admire/io-scheduler.git scord
$ cd scord
$ mkdir build && cd build
$ cmake ..
$ make -j <nprocs> slurm-plugin install

Once the shared object is compiled, Slurm needs to be configured in order to find it and use
it, which is done by adding an appropriate entry in the Slurm plugin configuration file (usually
/etc/slurm/plugstack.conf ):

include /etc/slurm/plugstack.conf.d/*.conf
optional /path/to/libslurmadmcli.so scord_addr=<ADDRESS>

scordctl_bin=/path/to/scord-ctl↪→

The key-value pairs following the plugin are optional configuration variables:

1. scord_addr : The address to contact the Scord service in Mercury format. For instance,
if scord has been configured to listen on port 52000 on a machine with the IP address
192.168.1.128 and using tcp as the transport protocol, the resulting address would be

ofi+tcp://192.168.1.128:52000 .

2. scordctl_bin : The absolute path to the scord-ctl binary to run on every node of an
allocation, can be the path to an executable (default to scord-ctl).

For example, if libslurmadmcli.so is installed in /usr/local/lib/ , scord-ctl is installed

in /usr/local/bin/ , and scord is configured to run on ofi+tcp://192.168.1.128:52000 , the

following entry should be added to plugstack.conf :

5https://slurm.schedmd.com/prolog_epilog.html
6Please refer to manual page man 7 spank and <slurm/spank.h> for details
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include /etc/slurm/plugstack.conf.d/*.conf
optional /usr/local/lib/libslurmadmcli.so scord_addr=ofi+tcp://192.168.1.128:52000

scordctl_bin=/usr/local/bin/scord-ctl↪→

Besides the shared library, the plugin also installs prologue and epilogue scripts for

job control under $PREFIX/share/scord/slurm/ . In order to enable them for Slurm use, the

following lines should be added to Slurm’s configuration file (where $PREFIX should be replaced
with the path where scord is installed):

Prolog=$PREFIX/share/scord/slurm/scord_prolog.sh
Epilog=$PREFIX/share/scord/slurm/scord_epilog.sh

Usage

The plugin extends Slurm’s command line arguments to allow users to request the deployment
of ad-hoc storage services for their jobs. The following arguments for this purpose are added to
srun , sbatch and salloc :

• --adm-adhoc : The job requires an adhoc storage service. The following types are supported:

– gekkofs : The job requires the deployment of the GekkoFS ad-hoc file system.

– expand : The job requires the deployment of the Expand ad-hoc file system.

– hercules : The job requires the deployment of the Hercules ad-hoc file system.

– dataclay : The job requires the deployment of the dataClay ad-hoc object-store.

The ad-hoc storage service will be deployed on the same nodes as the compute nodes and
its nodes will be shared with the application. The number of nodes assigned for the ad-hoc
storage service can be controlled with the --adm-adhoc-nodes option. If not specified, the
deployed ad-hoc storage service will share all the nodes assigned to the job.

• --adm-adhoc-exclusive : The ad-hoc storage service will be deployed on the same nodes
as the compute nodes, but the ad-hoc nodes will not be shared with the application. The
number of nodes assigned for the ad-hoc storage service MUST be specified with the
--adm-adhoc-nodes option and cannot be greater than the number of nodes assigned to
the job. Note, however, that the value of --adm-adhoc-nodes must be smaller than the
value of --nodes (or --ntasks ). Otherwise, the application would have no resources to
run on.

• --adm-adhoc-dedicated : The ad-hoc storage service will be deployed in an independent
job allocation and all the nodes for the allocation will be available for it. An adhoc_id will
be generated for it and will be returned to the user so that other jobs can use the deployed
ad-hoc storage service. In this mode, the resources assigned to the ad-hoc storage service
can be controlled with the usual Slurm options (e.g. --nodes , --ntasks , --time , etc.).

• --adm-adhoc-remote <adhoc_id> : The job will use a remote and dedicated ad-hoc stor-
age service that must have been previously requested in a different submission with the
--adm-adhoc-dedicated option. An identifier for that ad-hoc storage service must be
provided as an argument.
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Users can also fine-tune to a certain extent how their requested resources will be distributed
between the deployed ad-hoc storage service and the application by using the following CLI
options:

• --adm-adhoc-nodes : The number of nodes to use for the ad-hoc storage service. The nodes
will be allocated from the same partition as the compute nodes. This option is only valid
when used with --adm-adhoc or --adm-adhoc-exclusive .

In addition to the options for ad-hoc management described above, the plugin also extends
Slurm commands with the following options for capturing I/O hints from the user:

• --adm-input "<origin> <target>" : Define datasets that should be transferred between
the PFS and the deployed ad-hoc storage system and where they should be stored.

• --adm-output "<origin> <target>" : Define datasets that should be automatically trans-
ferred between the ad-hoc storage system and the PFS. The ad-hoc storage will guarantee
that the dataset is not transferred while there are processes accessing the file. The datasets
will be transferred before the job allocation finishes if at all possible, but no hard guarantees
are made.

• --adm-expect-output "<origin> <target>" : Define datasets that are expected to be
generated by the application. When using this option, the application itself must use
the ADMIRE programmatic APIs to explicitly request the transfer of the datasets (see
Section 3.1.3 for more details).

• --adm-inout "<origin> <target>" : Define datasets that should be transferred from the
PFS to the ad-hoc storage and back when finished.

Both origin and target must be valid dataset definitions of the form storage-id:path ,

where storage-id represents the identifier of the involved storage tier (e.g. lustre , gekkofs ,

tmp , etc.) and path represents a valid dataset identifier for that particular storage tier (e.g.

an object ID for a KV store or a path for a POSIX-compatible file system)7. Storage identifiers
can be separated into static and dynamic ones: static ones represent stable infrastructure-level
storage tiers that rarely change, such as a PFS (e.g. lustre , gpfs , ...) or a shared burst
buffer. They are defined by system administrators as part of scord’s configuration process so that
users can refer to them in any ADMIRE-enabled job submission. Dynamic storage identifiers, on
the other hand, are generic aliases that allow referencing the specific mount points created on
demand by scord-ctl for each deployed ad-hoc storage system (refer to Section 3.1.2 for more
details). Thus, a gekkofs / hercules storage identifier in a job submission will always refer to the
GekkoFS/Hercules instance requested (and deployed) for this particular job, regardless of where
the services were actually mounted. To simplify batch scripting, the provided prologue script
also exports the ADM_ADHOC_MNT environment variable so that users may refer to a dynamically
generated ad-hoc storage mount point in a generic way.

Examples

The listing below shows some examples of how the new CLI options can be combined to request
the automatic deployment of ad-hoc storage services and the movement of input and output
datasets:

7Due to limitations in Slurm argument processing, the dataset routing must be quoted.
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$ cat script.sh
#!/bin/bash
#SBATCH --adhoc-input="lustre:/$USER/input000.dat gekkofs:/input000.dat"
#SBATCH --adhoc-inout="lustre:/$USER/in_out_132.info gekkofs:/in_out132.info"
#SBATCH --adhoc-output="gekkofs:/results000.dat lustre:/$USER/%j/results000.dat"
#SBATCH --ntasks-per-node=32
#SBATCH --time=00:120:00
#SBATCH --output=script.%j.out
#SBATCH --error=script.%j.err

# [Step 1] Data preparation:
# `genmap` is a temporary file generated directly into the ad-hoc service.
# It never makes it to the PFS
srun -n 10 prepare ${ADM_ADHOC_MNT}/genmap

# [Step 2] Execute the actual simulation:
# `input000.dat` is an input file consumed by the job
# `results000.dat` is an output file generated by the job
# `in_out132.info` is an input/output file updated by the job
srun -n 256 parallel_job \

--input ${ADM_ADHOC_MNT}/input000.dat \
--output ${ADM_ADHOC_MNT}/results000.dat \
> ${ADM_ADHOC_MNT}/in_out132.info

# Run `script.sh` with a GekkoFS ad-hoc storage service in the same allocation
# and share allocation resources with it
$ sbatch --adm-adhoc gekkofs script.sh
Submitted batch job 30

# Run `script.sh` with a GekkoFS ad-hoc storage service in the same allocation.
# Resources are kept separate:
# ad-hoc services uses 8 nodes,
# application uses remaining nodes (8)
$ sbatch --adm-adhoc gekkofs --adm-adhoc-exclusive --adm-adhoc-nodes 8 script.sh
Submitted batch job 34

# Request the deployment of a dedicated GekkoFS adhoc storage service in its own
# allocation (since this job is only used for the ad-hoc service and nothing else,
# no script it's actually needed, but `sbatch` doesn't allow us to use an empty
# script. Thus, we trick it by wrapping bash's noop command `:`)
$ sbatch --adm-adhoc gekkofs --adm-adhoc-dedicated --adm-adhoc-nodes 10 --time

00:200:00 --wrap :↪→

Submitted batch job 41
Will deploy adhoc storage 123456

# Run `script.sh` with a dedicated GekkoFS storage service in its own allocation.
# To ensure that the GekkoFS instance is running, we set an explicit `after`
# dependency for its jobid.
$ sbatch --adm-adhoc gekkofs --adm-adhoc-remote 123456 --dependency=after:42

script.sh↪→

Submitted batch job 42

26



Implementation ADMIRE

�

Differences from D4.1

There have been several changes from the API designed in D4.1. Most of these
changes were made for the sake of clarifying user experience or due to limita-
tions in the implementation. We list them here for the sake of completeness.

1. The extensions to the dataset naming mechanism that allowed defining
dataset slices (see D4.1, Section 3.1) have been dropped. The reason is
that none of the project’s use cases actually had a need for them.

2. The ad-hoc options controlling Lifetime and resource allocation (see D4.1,
Section 3.2.2) with --adm-adhoc-context have been refactored and
renamed. The rationale behind this decision has been to simplify the user
experience as well as to adapt existing Slurm terminology rather than
inventing our own:

• The --adm-adhoc-context and --adm-adhoc-context-id options
have been removed in favour of simpler options.

• Option in_job:shared has become the default configuration mode

when requesting an ad-hoc service via --adm-adhoc <type> .

• Option in_job:dedicated has become --adm-adhoc <type>

--adm-adhoc-exclusive .

• Option in_job:new has become --adm-adhoc <type>

--adm-adhoc-dedicated .

• Option separate:existing has become --adm-adhoc <type>

--adm-adhoc-remote <id> .

3. The --adm-adhoc-walltime has been removed since Slurm’s stock
--time option can be used for its intended purposes.

4. Extra options controlling an ad-hoc behaviour after deployment such
as --adm-adhoc-access or --adm-adhoc-distribution will be inte-
grated in the near future into a more general --adm-adhoc-options
option accepting a list of key-value pairs. The reason is that this approach
is more flexible than hard-coded options.

3.3 Cargo: Parallel data staging

Cargo8 is a data staging service for HPC that runs alongside applications, transferring their data
between compute nodes and the PFS in a parallel manner. Cargo implements the final Data
Stager sub-component of the I/O Scheduler described in Section 2.2.2 and, as such, its main
responsibilities are to receive requests for transferring data from its clients, and to make effective
use of the available bandwidth as much as possible.

As with scord, Cargo is built around Margo RPCs, and has been designed to be able to work
either as a central infrastructure service or as a companion process for a parallel job. In ADMIRE
we chose to deploy a Cargo instance for each job running in the system and coordinate all of them
using scord. The reason is that while it would be simpler to have a single Cargo service managing

8https://storage.bsc.es/gitlab/hpc/cargo.git
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the transfers, this service would need to write data belonging to different users and, as such,
would require special privileges or capabilities which will hinder widespread adoption until the
project is well-trusted. To prevent this, Cargo is deployed in the context of a running job, belonging
to the job’s owner, which allows it to access their data without any special considerations.

To achieve these goals, Cargo is organised as follows:

• A master process listening for requests (Margo RPCs) from Cargo clients. This process is
responsible for processing any transfer requests arriving via RPC and dispatching work as
MPI messages.

• Several workers that execute the transfer tasks in parallel. The workers are MPI processes
that coordinate using the MPI/IO parallel I/O interface [5,13] to transfer data.

• A libcargo.so C++ library and cargo.hpp header file that clients can use to send data
transfer requests to a running Cargo service. For ADMIRE, the intended client for this
API is only scord, since any transfers requested in this way will be handled directly by the
targetted Cargo instance. Running ad-hoc storage systems and applications may also initiate
data transfers, but they should be requested and handled either via the libscord.so or
libscord-user.so APIs described in Section 3.1, respectively. The reason is that these
transfers should be taken into consideration by scord for data scheduling purposes and,
thus, scord should be notified of the client’s desire to execute them but it should scord’s
sole responsibility to actually initiate them.

�

Differences from DoA/D4.1

The initial plan stated in the DoA (and also D4.1) was to use the NORNS servicea

to support ADMIRE’s data staging requirements. NORNS is an infrastructure
service developed by BSC that allows moving data between different storage
backends in a one-to-one fashion, including file-to-file data transfers via POSIX
I/O, as well as file-to-memory and memory-to-memory transfers via RDMA [10].

As Task 4.2 progressed, however, we realised that ADMIRE’s requirements
were more oriented towards parallel data transfers than point-to-point commu-
nication. Moreover, NORNS requires special capabilities in order to read and
write data from different Linux users, which made it less convenient. For this
reason, we decided to write the Cargo service as a new development, as a more
flexible alternative focused towards ADMIRE needs. Note, however, that even
if NORNS was not finally adopted into the framework, most of Cargo’s code was
repurposed from it.

ahttps://storage.bsc.es/gitlab/hpc/norns

3.3.1 Building Cargo

Similarly to scord, cargo and its dependencies can be built using Spack. Once again, since cargo
is not yet available in the official Spack repositories, the cargo Spack repository needs to be
added to the Spack namespace in the target machine. To do that, the /spack directory in cargo’s

repository must be downloaded (e.g. to ~/projects/cargo/spack , and the following commands
executed:
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$ spack repo add ~/projects/cargo/spack/
$ spack install cargo

Include or remove variants with Spack when a custom ‘Cargo‘ build is desired. The available
variants are listed below:

Variant Command Default Description

OFI +ofi True Use libfabric as transport library

UCX +ucx False Use ucx as transport library (experi-
mental)

address address ofi+tcp://127.0.0.1:62000 Specify the protocol, host and port
where cargo should listen for RPCs.

After the installation completes, cargo needs to be loaded in order to use it:

$ spack load cargo
$ cargo -h
Usage: cargo [options]

Options:
-C [ --force-console ] override any logging options defined in configuration

files and send all daemon output to the console
-v [ --version ] print version string
-h [ --help ] produce help message

3.3.2 Testing Cargo

Since cargo is an MPI application it cannot (yet) be tested automatically when installing. Even
so, the tests can be manually executed provided that Spack is instructed to keep the build tree
instead of deleting it automatically. This can be achieved with the following commands:

$ spack install --keep-stage cargo +tests
$ spack cd --build-dir cargo

# start the Cargo master + MPI workers
spack-build-z7f7xav $ mpirun -np 4 src/cargo -C &

# in another TTY execute the tests
spack-build-z7f7xav $ ./tests -S ofi+tcp://127.0.0.1:52000

# cleanup
$ spack clean --stage cargo

3.3.3 Using the Cargo API

As discussed in the previous sections, Cargo offers a C++11 API for clients that wish to request
data transfers from a running server. The listing below demonstrates how this API can be used to
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read data in parallel from a PFS into a POSIX file system while executing some compute-intensive
code in the meantime:

1 /**
2 * Read files from a PFS into a non-parallel FS and do some compute
3 * intensive code in the meantime.
4 *
5 * @param[in] sources: A list of existing paths to read data from.
6 * @param[in] targets: A list of output paths were data should be written.
7 * @param[in] hv: A hypervector with data to process
8 * @return: A hypervector resulting from processing `hv` and `sources`
9 */

10 somelib::hypervector
11 read_files_and_compute(const std::vector<std::string>& sources,
12 const std::vector<std::string>& targets
13 somelib::hypervector& hv) {
14

15 // transform the list of pathnames into something Cargo understands
16 std::vector<cargo::dataset> cargo_sources;
17 std::transform(sources.begin(), sources.end(),
18 std::back_inserter(cargo_sources),
19 [](auto path) {
20 return cargo::dataset{path, cargo::dataset::type::parallel};
21 });
22

23 std::vector<cargo::dataset> cargo_targets;
24 std::transform(targets.begin(), targets.end(),
25 std::back_inserter(cargo_targets),
26 [](auto path) {
27 return cargo::dataset{path, cargo::dataset::type::posix};
28 });
29

30 // The address to the Cargo instance that should execute the transfers
31 cargo::server server{"ofi+tcp://192.168.1.5:62000"};
32

33 // Send the transfer request:
34 // `cargo::transfer_datasets()` does not block, but returns a
35 // `std::future<cargo::transfer_status>` that clients can use to
36 // wait for completion if needed
37 std::future<cargo::transfer_status> f =
38 cargo::transfer_datasets(server, cargo_sources, cargo_targets);
39

40 // Do some interesting preprocessing for some time with the input
41 // hypervector while data is begin moved...
42 auto metadata = compute_intensive_code_phase1(hv);
43

44 try {
45 // Try to get the `cargo::transfer_status` from the future:
46 // This will block if the transfer has not been completed yet, or
47 // it will throw if the transfer finished in error. If everything
48 // worked well, however, a valid `cargo::transfer_status` will be
49 // returned with information about the transfer.
50 cargo::transfer_status = f.get();
51

52 // do something even more interesting with the data processed
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53 // in the first stage and the files transferred asynchronously
54 return compute_intensive_code_phase2(hv, metadata, targets);
55 }
56 catch(const std::exception& e) {
57 std::cerr << "Transfer failed: " << e.what() << "\n";
58 throw; // rethrow exception to the caller
59 }
60 }

3.3.4 Experiments

While Cargo’s parallel data staging should intuitively be faster than sequential copying under most
circumstances, it is worth it to actually evaluate its implementation to see where we stand. This
section presents an initial evaluation of Cargo’s data staging performance without the usage of
ad-hoc storage systems. To evaluate the service we ran a number of experiments targeting process
and node scalability on the MOGON II supercomputer at JGU. The MOGON II supercomputer
consists of 1,876 nodes in total, with 822 nodes using Intel 2630v4 Intel Broadwell processors
(two sockets each) and 1,046 nodes using Xeon Gold 6130 Intel Skylake processors (four sockets
each). The Skylake nodes were used in all experiments. MOGON II uses a 100 Gbit/s Intel
Omni-Path interconnect to establish a fat tree between all compute nodes, providing a 7.5 PiB
storage backend managed by several Lustre file systems. Further, since Cargo only relies on the
POSIX and MPI-IO interfaces to read and write data, no special conditions were required for the
experiments. The ROMIO configuration was also not modified for these experiments.

File size per process

B
an

dw
id

th
 (M

iB
/s

)

0

100

200

300

400

500

600

700

800

1 MiB 16 MiB 128 MiB 1 GiB 16 GiB 32 GiB

Cargo (1 Worker)

Cargo (2 Worker)

Cargo (4 Worker)

Cargo (8 Worker) 

Cargo (16 Worker)

CP

Figure 3.2: Cargo’s single node performance when copying files of varying sizes from Lustre to
the node’s memory in several worker configurations compared with the Linux cp command.

In the first experiment, Cargo transferred files from Lustre to a single node in multiple worker
configurations to evaluate its worker scalability. We established a baseline using the standard
Linux cp utility to copy files, and we compared Cargo’s performance against it. Both tools copied
files of varying sizes, ranging from 1 MiB to 32 GiB, from a specified directory in Lustre to the
compute node’s memory. In this experiment, the number of Cargo workers corresponding to MPI
processes ranged from 1 to 16. Figure 3.2 depicts Cargo’s performance against the cp baseline
in terms of bandwidth, with different numbers of workers.

As described in Section 3.3, the service creates a master process and some worker processes
to handle I/O operations and establish connections for file transfers. These operations impose an
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overhead which will be called transfer overhead in this section. The transfer duration consists of
the latency of reading from the source directory (in Lustre), the latency of writing to the target
directory (compute node memory), and the transfer overhead (network communication). The
transfer overhead remains constant for every file transfer due to the same operation for each
transfer, while the latency of read/write operations increases with the file size. For small files,
e.g., 1 MiB and 16 MiB files, we expected cp to be faster than Cargo, which was confirmed by
the experiment. However, the small difference in performance between Cargo and cp suggests
that the transfer overhead is negligible. As the file sizes exceed 128 MiB, Cargo exhibits a
significant performance improvement compared to cp regarding bandwidth. For instance, Cargo
can transfer a 32 GiB file approximately 3.7 times faster than cp .
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Figure 3.3: Cargo’s node scalability when copying 32 GiB files from Lustre to the nodes’ memory.

The second experiment assesses Cargo’s scalability. To achieve this, a theoretical scenario is
assumed where each node runs an independent job that only performs read operations on the
same dataset. Since none of the nodes attempts to modify the files, conflicts in access are avoided.
Based on these assumptions, it is possible to copy files to the local space of each node, enabling
them to perform their respective jobs using these files. To ensure acceptable performance and
scalability, a copy tool is required to improve its performance as the number of nodes increases.
Note, however, that this experiment essentially replicates the dataset on each node involved:
when an ad-hoc storage system is used, the entire dataset only needs to be copied once into the
ad-hoc storage system’s single namespace, which is shared across all nodes that are part of the
compute job. In this case, investigating Cargo’s scalability is relevant because input files can be
copied from Lustre to the ad-hoc storage system’s namespace from multiple nodes in parallel to
increase stage-in performance.

Figure 3.3 illustrates this process and shows Cargo’s bandwidth when transferring a 32 GiB
file from Lustre to the node’s memory on up to 16 nodes. The Cargo workers were set to 16 as it
performed best in the first experiment. The experiment demonstrates that Cargo scaled linearly
with the number of nodes, achieving up to 8.5 GiB/s data throughput.
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4. Supporting software and algorithms

The software described in Section 3 provides the necessary scaffold for the I/O Scheduler to
support the ADMIRE framework, but does not describe the control logic behind it. This section
describes additional supporting software developed in the project that will be integrated in the
near future to actually provide the control mechanisms for data transfers, PFS I/O, and QoS. The
general goals that we want to fulfil in the remainder of the project are the following:

1. Contention-aware scheduling of I/O requests at the PFS level. This includes the automatic
classification of applications into groups according to their I/O requirements as well as the
automatic prioritisation of such application groups to determine request ordering.

2. Dynamic computation of QoS limits. Being able to efficiently allocate the bandwidth and
IOps from the PFS between applications means that the I/O flows at the PFS level can be
restricted and distributed fairly according to system conditions. These limits can be used to
steer both Lustre’s LIME subsystem (see Section 2.1.2) as well as data staging operations.

3. Modelling and prediction of an application data needs. Predicting dataset usage from an
application theoretically allows moving data into an ad-hoc storage service just in time the
application actually needs it. This has benefits in that it provides fine-grained control of an
ad-hoc storage capacity and it also allows separating a job’s data transfers in time, which
simplifies management.

To achieve these goals, control strategies need to be deployed at different levels in the I/O
Scheduler hierarchy (e.g. the Coordinator, the Data Stager, and even the PFS itself), and need
to be fed with metrics derived from the actual behaviour of applications. In this section, we
describe the control strategies developed in WP4 and the modelling tools they require to properly
function. Then, we discuss how we plan to integrate these solutions in the ADMIRE architecture.

4.1 IO-Sets

I/O scheduling strategies try to decide algorithmically which application(s) are prioritised (e.g.
first-come-first-served or semi-round-robin) when accessing the shared PFS. Previous work [7]
thoroughly demonstrated that existing approaches based on either exclusivity or fair-sharing
heuristics showed inconsistent results, with exclusivity sometimes outperforming fair-sharing for
particular cases, and vice versa. Based on these observations, we decided to research an approach
capable of combining both by grouping applications according to their I/O frequency. As a result,
we designed IO-Sets, a novel method for I/O management in HPC systems.

In IO-Sets, applications are categorised into sets based on their characteristic time, rep-
resenting the mean time between I/O phases. Applications within the same set perform I/O
exclusively, one at a time. However, applications from different sets can simultaneously access
I/O and share the available bandwidth. Each set is assigned a priority determining the portion of
the I/O bandwidth applications receive when performing I/O concurrently. Therefore, proposing a
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heuristic in the IO-Sets method involves addressing two important questions: (i) how to allocate
an application to a set, and (ii) how to define the priority of a set.

We answer these questions by developing a scheduling heuristic called Set-10, which is a
simple method that follows the IO-Sets approach and requires minimal information about the
applications. The IO-Sets method, the Set-10 heuristic, and an extensive evaluation can be found
in a corresponding paper [3].

4.1.1 Set-10

To schedule the I/O requests of applications using Set-10, the characteristic time of the applica-
tions is required. The characteristic time, denoted as witer, is defined as:

witer
def
=

∑
i≤n t

(i)
cpu + t

(i)
io

n
.

Where n represents the number of iterations of the application, and tcpu and tio represent the
duration of the compute and I/O phases, respectively.

We define Set-10 as the strategy in the IO-Sets method, which consists of:

• The π function that maps jobs to sets using Equation (4.1).

• The list of sets with their priorities {. . . , (S−1, 10), (S0, 1), (S1, 0.1), (S2, 0.01), . . . }, where the
priorities are computed using Equation (4.2);

Set mapping: Given an application Aid with a characteristic time wid
iter, the allocation mapping

is denoted as π:

π : Aid 7→ Sblog10wid
itere

(4.1)

Where bxe represents the nearest integer value of x.

In other words, an application is assigned to a set that corresponds to the order of magnitude
of its witer. For instance, there will be a set for applications with witer values such that log10witer

falls between 0.5 and 1.5 (corresponding to witer values between 4 and 31, assigned to S1), another
set for log10witer between 1.5 and 2.5 (corresponding to witer values between 32 and 316, assigned
to S2), and so on.

Set priority: To define priorities for the sets, we make the following observation: if two ap-
plications start performing I/O at the same time and share the bandwidth equally, the one with
the smallest I/O volume finishes first. If we increase the bandwidth for the application with the
smallest I/O volume, it will finish earlier, while the larger one will not be delayed.

Based on this observation, we aim to provide higher bandwidth to the sets with smaller I/O
accesses. Intuitively, if the characteristic times (witer) are of different orders of magnitude, we
assume that the I/O accesses also differ significantly. Using witer instead of the I/O volume has
the advantage of being easier to obtain. Therefore, we define the priority pi for set Si (which
corresponds to jobs such that i = blog10wid

itere) as follows:

pi = 10−i (4.2)

This means that applications with the smallest witer receive the highest priority and, conse-
quently, most of the bandwidth. The priorities decrease exponentially: S1 receives a priority of
1/10, S2 has a priority of 1/100, and so on.
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4.1.2 SimgIO

To develop and evaluate IO-Sets and Set-10, we created SimgIO, a simulation tool that implements
the IO-Sets method on top of the SimGrid framework [8]. Additionally, we developed a Python
package called PySimgIO, which is used for writing and executing simulation tests. The source
code and instructions to reproduce all the results presented in the aforementioned manuscript
can be found at https://gitlab.inria.fr/hpc_io/io-sets.

As mentioned, SimgIO was developed on top of SimGrid v3.301 and simulates a platform where
a set of jobs run and perform I/O concurrently. The tool implements the IO-Sets methodology
and can be used to evaluate different I/O scheduling approaches, such as Fair-Share (applications
can do I/O concurrently and receive the same amount of bandwidth) or All-Exclusive (only one
application at a time can perform I/O).

PySimgIO is a Python package initially developed to facilitate the execution of our tests but
has now become an integral part of SimgIO. It includes functions that allow us to generate a wide
range of tests. With PySimgIO, we can write tests using the AppGenerator and Evaluation classes.
The Evaluation class is responsible for generating the workloads and executing a sequence of
tests considering different scheduling strategies. At the end of the execution, the class writes
a CSV file with the simulation output for each generated workload. The AppGenerator class is
responsible for generating jobs following a predefined generation protocol (described in Section
V-B of our manuscript [3]).

Installation

To execute SimgIO and PySimgIO, it is necessary to install the following dependencies (version
numbers serve as an indication of the versions that were tested):

• C++ compiler (g++ v.9.3.0)

• CMake (v3.16.3)

• Python 3 (v3.9)

• libboost (v1.48)

In a Debian-like system, recent versions of the dependencies can be installed as follows:

$ apt install python3 python3-pip
$ apt install g++
$ apt install cmake
$ apt install libboost-dev libboost-context-dev
$ apt install git

Installing and Executing SimgIO SimgIO is executed on top of the SimGrid (v3.30) framework.
Therefore, it is necessary to install SimGrid by following these steps:

$ git clone https://framagit.org/simgrid/simgrid
$ cd simgrid/
$ cmake -DCMAKE_INSTALL_PREFIX=/opt/simgrid .
$ make
$ make install

1https://framagit.org/simgrid/simgrid
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The above commands will compile the SimGrid library and install it on the system. After the
installation is complete, we can verify it by compiling and running SimGrid tests:

$ make tests -j8 # Build the tests
$ ctest -j8 # Launch all tests

If everything is set up correctly, we should see the output of the tests. Next, we can then
compile SimgIO. To do this, return to the root folder of the IO-Sets repository and execute the
following commands (By default, the executable file is placed in bin/ ):

$ mkdir build
$ cd build
$ cmake ../
$ make

SimgIO receives two XML files as input: the platform file and the deployment file. The
platform file describes the computational environment, while the deployment file describes the
workload. An example of these files, along with a complete description of each XML field, is
provided below. You can find these examples in the example/deployment/simple_d.xml and

example/platform/host_with_disk.xml files.

1 <!-- Platform File -->
2 <?xml version='1.0'?>
3 <!DOCTYPE platform SYSTEM "https://simgrid.org/simgrid.dtd">
4 <platform version="4.1">
5 <zone id="AS0" routing="Full">
6 <!-- A host with 2000 cores and speed of 1Gflops (per core)-->
7 <host core="2000" id="bob" speed="1Gf">
8 <prop id="ram" value="100B"/>
9 <!-- Disk with 10000GiB of space and speed of 1GBps of write/read -->

10 <disk id="Disk1" read_bw="1GBps" write_bw="1GBps">
11 <prop id="size" value="1000GiB"/>
12 <prop id="mount" value="/scratch"/>
13 <prop id="content" value="storage_content.txt"/>
14 </disk>
15 </host>
16 </zone>
17 </platform>

1 <!-- Deployment File -->
2 <?xml version='1.0'?>
3 <!DOCTYPE platform SYSTEM "https://simgrid.org/simgrid.dtd">
4 <platform version="4.1">
5 <actor host="bob" function="host">
6 <argument value="app_1"/> <!-- App Name -->
7 <argument value="5" /> <!--periodicity -->
8 <argument value="5e9" /> <!-- Compute size (flop) -->
9 <argument value="10000000000"/> <!-- File size (bytes) -->

10 <argument value="1"/> <!-- priority -->
11 <argument value="1"/> <!-- Group ID -->
12 <argument value="0"/> <!-- release time (s)-->
13 </actor>
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14 <actor host="bob" function="host">
15 <argument value="app_2"/> <!-- App Name -->
16 <argument value="6" /> <!--periodicity -->
17 <argument value="5e9" /> <!-- Compute size (flop) -->
18 <argument value="2000000000"/> <!-- File size (bytes) -->
19 <argument value="1"/> <!-- priority -->
20 <argument value="1"/> <!-- Group ID -->
21 <argument value="0"/> <!-- release time (s)-->
22 </actor>
23 </platform>

A simulation with these files can be executed as follows:

$ cd bin/
$ ./simgio -p ../example/platform/host_with_disk.xml -d

../example/deployment/simple_d.xml -ts 1 -te 9 --log=simgio.thres:verbose↪→

Installing PySimgIO After installing SimgIO, we can proceed to install PySimgIO. To do this,
execute the following commands:

$ pip install python-dateutil --upgrade
$ pip install setuptools
$ pip install -e .
$ pip install -r PYsimgio/requirement.txt

To execute the simulations using the PySimgIO package, it is necessary to configure the variable
SIMGIO_HOME in PYsimgio/evaluation.py . The variable should be set to the actual directory of
SimgIO.

1 class Evaluation:
2 # List of special character
3 COMMENT_CHAR = '#'
4 HOST = 'bob'
5 FUNCTION = 'host'
6

7 SIMGIO_HOME = '$HOME/iosets' # <-- MUST BE FULL PATH TO PROJECT'S SOURCEDIR
8 CSV_FOLDER = 'csv'
9 XML_FOLDER = 'xml'

10 GRAPH_FOLDER = 'graphs'

To illustrate the usage of PySimgIO, let’s consider the example below. In this example, the
class evaluation is utilized to execute simulations with 20 distinct workloads, each composed
of 60 jobs. During each execution, a workload with a different job distribution is created by
calling the tasks_per_mu function. Then, the set_mapping function is used to define the set of

jobs. Finally, the functions f_fair_share and f_set_10 are employed to set the priorities. This
example can be found in example/pysimgio/run_tests.py .

1 from PYsimgio.app_generator import APPGenerator
2 from PYsimgio.evaluation import Evaluation
3
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4 """
5 Set mapping
6 """
7 def set10_mapping(generator: APPGenerator):
8 for app in generator.apps:
9 group_id = round(math.log10(app.w_iter))

10 app.set_set_id(group_id)
11 def fairShare_mapping(generator: APPGenerator):
12 for app in generator.apps:
13 app.set_set_id(1 + app.app_id * 10 ** (-6))
14

15 """
16 Set priority
17 """
18 # Each app receives a different priority, so everyone executes together
19 def f_fair_share(generator: APPGenerator):
20 for app in generator.apps:
21 app.set_priority(app.set_id)
22

23 def f_set_10(generator: APPGenerator):
24 for app in generator.apps:
25 app.set_priority(1 / (10 ** app.set_id))
26

27 def tasks_per_mu(n_apps):
28 x = random.uniform(0, 2 / 3)
29 # Using the randomly defined value 'x', we define the number of tasks
30 # generated per mu value
31 small = int(round(x * n_apps)) # small groups
32 medium = int(round((1 / 3) * n_apps)) # medium group
33 large = n_apps - medium - small # large group
34 return x, [small, medium, large]
35

36 priority_functions = {'FairShare': (fairShare_mapping, f_fair_share),
37 'Set-10': (set10_mapping, f_set_10)}
38

39 test = Evaluation(evaluation_csv='evaluation.csv',
40 n_executions=20,
41 n_apps=60,
42 mu_list=[10, 100, 1000],
43 sd_percent=0.1,
44 io_limit=0.8,
45 const=20000,
46 tasks_per_mu=tasks_per_mu,
47 timeframe_start=6000, timeframe_end=14000,
48 with_desyn=True,
49 with_noise=True,
50 platform_file=f"{Evaluation.SIMGIO_HOME}
51 /simulation_results/host_with_disk.xml")
52

53 Evaluation.clean_all()
54 test.set_priority_functions(priority_functions)
55 test.run_test()
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Validating the simulation approach

To validate the simulation strategy, we compare it to an experiment conducted on a real system.
For this proof-of-concept implementation, we wrote a centralized scheduler to implement Set-10
and modified the IOR benchmark [6] to communicate with it before and after each I/O phase.

In this scenario, a total of N = 16 concurrent IOR instances are created, and distributed on two
sets: nH high-frequency applications of witer = 64s and N − nH low-frequency ones of witer = 640s.

The witer values were chosen so that the shortest I/O phases would still write a total of
32 GB, which was experimentally observed to be enough to reach peak performance in the
used platform [2]. The access pattern was also chosen to allow for reaching peak performance:
contiguous 1 MB write requests are issued to per-process files. The experiments were executed
five times.

The experiments were conducted on the Bora cluster from the PlaFRIM experimental platform 2.
Each of its nodes has two 18-core Intel Xeon processes, 192 GB of RAM and runs CentOS7.6.1810
(kernel v3.10.0-957.el7.x86 64). The parallel file system is BeeGFS v.7.2.3 deployed over two
servers, each with four storage targets and one MDT. The servers and compute nodes are
connected through a 100 Gbps Omnipath network.

We used eight nodes to run applications and a separate node for the scheduler. Data sizes,
numbers of nodes and processes and their placement, and stripe count (all eight targets) were
selected so each application would reach peak performance by itself, as recommended by Boito et
al. [2] in their study conducted in the same platform. Moreover, priority-based bandwidth sharing
was implemented by using ten times more processes for each application from one set than to
each from the other set (160 vs. 16). We experimentally confirmed that this resulted in the ones
with more processes receiving roughly ten times more of the available bandwidth than the others
when sharing it. More details about these experiments can be found in [3].
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Figure 4.1: Comparison of practical (box and whisker) and simulated (dashed lines) executions
with Set-10. The blue line and points show baseline executions without Set-10. Simulated results
are deterministic. Max Stretch is shown on the left (lower is better) and Utilization on the
right (higher is better). The y-axes do not start at 0.

As a baseline, we also evaluated a scenario without our scheduler, which we call the “sys-
tem scheduler” (which would be close to Fair-Share with additional optimization). For this, all
applications used the same number of processes (16).

2https://www.plafrim.fr/
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The results presented in Figure 4.1 show the excellent precision of the simulator. 80% of
the experimental results are within 3.5% (resp. 1.5%) of the simulated Utilization (resp. Max
Stretch). There are two outlying scenarios:

• For nH = 4, one repetition had results severely different from the others. We believe this
was due to interference from other jobs on the shared platform.

• When nH = 15, most practical results are slightly better than the simulation. In this case,
most I/O phases are small, hence we attribute this to system optimizations such as caching.
Note that this is not observable at nH = 16 because the Max Stretch is equal to 1, leaving
no room for optimizations.

4.1.3 Integrating IO-Sets in ADMIRE

As demonstrated by the results presented in the previous section, the IO-Sets method, and more
specifically the Set-10 heuristic, is very good at grouping applications with similar I/O patterns.
This, in turn, also allows dynamically computing an appropriate bandwidth distribution for the
applications currently being managed by the algorithm. Thus, it makes more sense to use it
to directly manage the I/O from a system-wide storage tier such as a PFS, rather than using it
for scheduling data transfers from scord directly. Due to this, we explored extending Lustre to
include IO-Sets scheduling but the scope of this implementation was deemed too large for the
effort allocated in the project. Nevertheless, implementation of smaller scope was possible for
BeeGFS3, a commercial parallel file system from ThinkParQ GmbH, which we describe below.

Adding IO-Sets to BeeGFS4

As explained in Section 4.1, there are two components required to implement the IO-Sets
framework: a way to ensure exclusive access for applications in the same set, and a way to
partition the I/O bandwidth “unfairly”, according to the priority of the set. For example, in Set-10,
each set should get 10 times as much bandwidth as the next set. As discussed by the manuscript [3],
the designers of IO-Sets considered several practical implementations. We explore one of them,
integrating IO-Sets directly into a shared parallel file system. This has several advantages: first,
it is transparent to the applications; second, it is relatively straightforward to implement because
parallel file systems already have all the logic required to handle requests from multiple clients,
all that is needed is to tweak them so that these requests are treated according to the IO-Sets
priority.

The BeegFS file system was chosen because it already provides two policies to handle requests,
either the standard first-come, first-served or “per-user”, the latter intended to improve fairness.
This is not precisely the policy needed for IO-Sets, but because the software already provides a
choice, these features are cleanly isolated in the code base and it was easy to add a third one.

The implementation itself is conceptually simple. It focuses on storage servers and ignores
metadata servers. When an application wants to write to the file system, the BeegFS client splits
the data into chunks, called stripes. Each stripe is associated with a request destined for the file
system servers, so for example, a 10MiB write on a system with 1MiB stripes will generate 10
requests to the storage servers (simplifying a bit and ignoring some bookkeeping requests). These
requests will then reach the storage servers and be processed in queues. This is fairly standard
and not particularly specific to BeegFS. I/O scheduling is then a simple matter of ordering the
requests in the storage servers’ queues.

3https://www.beegfs.io
4Due to limitations in BeeGFS’s license agreement, the code of IO-Sets integrated into it cannot be freely disclosed

in a public deliverable. We are currently discussing with the BeeGFS developers how to release this code publicly.
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Let’s illustrate with small examples. Say we have two members of the same set, applications
APP1 and APP2 making three requests each (see Figure 4.2). Because the applications are in the
same set, they have the same priority, and the IO-Sets framework dictates that they should write
in an exclusive manner. Here it means that all requests of APP1 are processed before APP2 .

Figure 4.2: Ensuring exclusive access. All requests for APP1 are processed before APP2.

Now, let’s assume APP1 and APP2 are in different sets, APP2 having twice the priority
(figure 4.3). It means that two requests of APP2 should be processed for every request of APP1 .

Figure 4.3: Ensuring unfair bandwidth sharing. Two requests of APP2 are processed for every
one request of APP1 .

Implementation: The IO-Sets framework requires requests to be tied to a specific application.
The BeeGFS request header contains a user ID, but no application ID, it was thus extended to
include it. Unfortunately, application ID is not a concept as well defined as user ID, there’s no
standard system call to get an application ID from the operating system. In the context of this
work, application IDs are set by the job scheduler of a cluster, and made available to applications
via the environment, Slurm writes it to the SLURM_JOB_ID environment variable for example. The
BeeGFS client was modified to read it directly from the application environment. The Lustre file
system, which makes use of the application ID, reads it in the same manner. On the BeeGFS servers,
the queue processing was adapted for IO-Sets. Once requests were augmented with application
ID, all that is left is to pick requests from the queue according to the priority of the application,
and, to ensure exclusive access, process applications with the same priority one after the other.
This is straightforward enough that it probably does not warrant more details.

An option --jobstats was also added to the beegfs-ctl tool, to help visualise the instanta-
neous bandwidth usage per application. With this, it was easy to check that two applications with
the same priority get exclusive access to the bandwidth.

Results: We ran a few validation tests. Note that these are not representative in terms of BeeGFS
performance, being run on general-purpose machines without any optimized configuration (the
observed bandwidth with an unmodified BeeGFS installation was around 600MiB/s). We merely
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Bandwidth A (MiB/s) Bandwidth B (MiB/s)

569.13 58.52

586.68 62.19

606.64 62.08

845.43 101.36

525.77 55.36

Table 4.1: Bandwidth sharing between application A (priority 10) and B (priority 1).

Bandwidth A (MiB/s) Bandwidth B (MiB/s) Bandwidth C (MiB/s)

621.96 81.07 8.11

555.83 68.76 6.87

542.02 72.78 7.43

605.36 81.35 8.32

556.95 67.88 7.35

Table 4.2: Bandwidth sharing between applications A, B, and C (priorities 100, 10, and 1, resp.).

wanted to validate the approach and make sure the overhead was acceptable. Presented in
Table 4.1 is an example of Set-10 bandwidth partitioning for two applications, using the IOR
benchmark with 16 processes each writing to their own files. Application A has priority 10 and
application B has priority 1. The result is the mean bandwidth, for five runs.

Table 4.2 presents the results with three applications A, B and C, with the priority still separated
by a factor of 10.

Using IO-Sets for QoS control

Part of the Set-10 heuristic is the distribution of bandwidth to applications according to their
periodicity (see Equation 4.2). This aspect of the proposal is very suitable for dynamically
computing (and updating) QoS limits. This is very useful for scord since it would allow the service
to determine with a high probability the best bandwidth distribution for the current set of data
transfers. This calculation can then be used to (1) control Lustre’s LIME subsystem described
in Section 2.1.2; and (2) to dynamically control the number of worker processes for each Cargo
service in order to restrict the data to the established QoS constraints (refer to Section 4.2).
Both approaches are currently being worked on as part of the final integration effort and will be
reported in WP4’s final deliverable.

4.2 Enforcing QoS through I/O malleability

As discussed in Section 2.1.2, data transfers between the ad-hoc storage systems and the PFS need
to honour the established Quality of Service guarantees. An advantage of having a dedicated data
staging service that runs independently from applications is that we can control the number of
MPI processes dedicated to I/O, which can directly affect the data rate obtained from the PFS [2].
By considering these processes as a malleable entity, we can dynamically adjust the data rate
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from each Cargo service, thus enforcing QoS even if PFS mechanisms such as Lustre’s LIME are
not available.

In this section, we propose an algorithm5 to orchestrate the running Cargo instances to
control such processes and reduce the number of QoS breaches. The algorithm was tested inside
ElastiSim6, a batch-system simulator for malleable workloads written for ADMIRE by TUDA,
that simulates (1) jobs and applications, (2) the scheduling algorithm, and (3) the platform itself.
Using ElastiSim, we modelled each Cargo instance as a malleable job doing I/O on the PFS and
constructed a control algorithm around this.

The algorithm requires the following information:

• Number of available nodes

• Cargo instances

• Increase/Decrease bandwidth of Cargo instances (using FlexMPI or splitting transfers)

• Bandwidth obtained by each Cargo instance (Bytes transferred / Running time)

• QoS required by each Cargo instance

The algorithm itself aims to execute Cargo instances while balancing those with high require-
ments and those with low requirements. Balance can be configured, but a 1:1 ratio is implemented
in ElastiSim for each round. Each Cargo instance runs with a fixed number of initial processes.

Once all the jobs are executed, we process all the running jobs that have obtained bandwidth
information. Each Cargo instance can be classified as either Shrink (the established QoS limit is
being exceeded) or Expand (obtained bandwidth is below the established QoS constraint) using
the following algorithm:

Cargoaction =

{
Expand, if Cargobw < CargoQoS + threshold

Shrink, if Cargobw > CargoQoS + threshold

To test the algorithm, we simulate 35 concurrent transfer jobs (1,000 transfer steps each)
executing with a maximum number of 7 nodes. This exhibits 514 QoS breaches with the full
algorithm (i.e. both Expand and Shrink actions are applied), 159,694 QoS breaches when only

the Shrink action is applied, 6,405 QoS breaches without any control algorithm, and 2,078
violations using submission heuristics. We consider a QoS violation when Expand actions are
required in a particular Cargo instance during the transfer phase (the same Cargo job can exhibit
multiple violations during its lifetime, and the algorithm considers each violation separately). The
benefits of working with the full algorithm are clear.

Conversely, if we submit jobs for execution with at least 3 nodes (but with the capability of
expanding to 7 nodes or shrinking to 1 node), we find the next results: 465 QoS breaches with the
full algorithm, 149,401 QoS breaches when only the Shrink action is applied, 14,228 when only
the Expand action is applied, 23,156 QoS breaches with no control algorithm, and 23,030 using
submission heuristics. Again, running with the full algorithm shows a great improvement over the
other alternatives. It is worth noting that the action of shrinking or expanding should be used in
tandem, as the environment is dynamic and some tasks may need to apply both. Additionally, note
that in this second experiment interference between tasks increases due to an increased number
of jobs. This happens because reducing nodes from a transfer task releases resources that are
immediately assigned to pending jobs. Note, however, that this is a simulation-specific problem
since in a real scenario, Cargo instances are linked to a specific job allocation and reducing

5https://storage.bsc.es/gitlab/eu/admire/cargo-simple-scheduler
6https://elastisim.github.io
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processes for an existing Cargo instance does not automatically release resources for other jobs.
Nevertheless, one way to reduce such in-simulation interference is to apply submission heuristics,
such as not allowing a job to be executed if the number of free nodes falls below a threshold.

4.3 FTIO: Detecting I/O Periodicity Using Frequency Techniques

Characterising the I/O behaviour of an HPC application can be a challenging task. Various
aspects, for example, I/O contention, can cause performance variability making modelling I/O a
well-known problem. On the other hand, informing a system about the periodicity of I/O can be
extremely valuable for different optimisation techniques, such as I/O scheduling and burst buffer
management. For example, by joining an application’s I/O periodicity with information about its
dataset usage, we could determine the best moment to stage in/out the application’s data into an
ad-hoc storage service. To achieve this "just in time" data staging, WP4 plans on integrating the
FTIO tool into scord’s decisions.

FTIO is a tool from WP5 introduced in D5.3, that can detect an application’s I/O periodicity
in an online manner. It uses the discrete Fourier transformation (DFT) to find the frequencies
constituting a signal (i.e., temporal I/O behaviour) combined with an outlier detection method
(Z-score) to find the dominant frequency. With the dominant frequency at hand, the periodicity
of I/O can be computed in a simple manner (i.e. it’s just its reciprocal). On the other hand, the
absence of a dominant frequency is a direct indicator that the I/O behaviour of the application is
not periodic. One of the advantages of FTIO is that it has a very low overhead, making it well-suited
for online prediction. Moreover, as the approach provides a metric of confidence in the obtained
results, it can be used in practice in many scenarios, such as I/O and data scheduling decisions.

In particular, decisions can be made with a certain level of confidence, leveraging probabilistic
aspects in the developed approaches. Additionally, the approach also allows for identifying I/O
bursts. While several of its parameters can be changed (e.g. the considered time window ∆t

and the sampling frequency fs), their selection directly allows for identifying the time regions of
interest, as well as I/O of interest (e.g., a low value for fs will result in ignoring any high-frequency
behaviour, according to the Nyquist theorem). For example, in Figure 4.4 below, we executed
LAMMPS [14] with 3,072 ranks. We choose the 2-d LJ flow simulation with 300 runs and dump all
atoms every 20 runs. Using FTIO with a sampling frequency of 10 Hz, the periodicity of I/O was
found to be 0.039 Hz (25.73 s) with moderate confidence. For comparison, the real mean period
for this execution (which can only be known because the application was manually instrumented)
was 27.38 s. More details about the approach and an extensive evaluation can be found in our
paper, currently available as a pre-print [12].

Figure 4.4: FTIO on LAMMPS with 3,072 ranks.

As discussed in D5.3, the approach is much more sophisticated and various extensions are
currently being examined, like using wavelet transformation instead of the DFT or finding the
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dominant frequency with clustering approaches. Moreover, at the simplest level, in order to detect
the periodicity of I/O, the approach requires bandwidth over time. Combined with an ad-hoc
storage service such as GekkoFS, this information can be easily obtained, as in ADMIRE these
services already capture the application’s I/O requests.

While the approach can be used for various aspects not limited to I/O (e.g., prediction of
malleable time windows to perform malleable decisions), one of the main motivations behind its
development is its use with IO-Sets and for ad-hoc storage management. For both cases, we are
currently working on the integration of the developed components.

• For IO-Sets, the witer metric used for assigning applications to sets and defining their
priority directly corresponds to the period of the I/O phases (the inverse of their frequency),
which is reported by default by FTIO. FTIO can be used either with information obtained
from an application’s ad-hoc storage service (bandwidth over time) or with its own tracing
library for applications that access the PFS directly. FTIO can then communicate the period
(witer) to scord, which can apply the Set-10 heuristic for bandwidth sharing to compute
the QoS limits (see Section 4.1.1). FTIO can also provide this metric to the PFS clients, so
they can communicate it to the server if it implements the Set-10 heuristic for set-exclusive
access (like our prototype with BeeGFS).

• For ad-hoc storage management, the idea is to use the predictions provided by FTIO for
deciding when to stage data in or out, with the goals of using the ad-hoc storage capacity
efficiently and controlling the requested bandwidth to minimise I/O interference to concur-
rent applications. With the information of bandwidth over time provided by ad-hoc storage
services during the execution of an application, FTIO can offer predictions to scord regarding
the frequency of I/O phases, their duration, amount of data, etc. Then, that will be combined
with what is known about the files accessed by the application and can be used to decide if
data must be staged out (to free space) or in before the next I/O phase, and how long it will
be before that is needed. That could be used, for example, by the scord service to prioritise
more urgent data movements7, or to establish a QoS limit to this movement.

In this context, there are two possibilities. In case the prediction is wrong and, consequently,
a bad decision is taken, the application may have to wait for files to be moved between the
PFS and the ad-hoc storage system. On the contrary, if the prediction is correct, an effective
decision can be made that allows maximising the usage of the buffers and the usage of the
shared I/O resources. Since FTIO provides a metric that delivers confidence in the results,
decisions with probabilistic occurrences can be made rather than mere guesses. These
aspects are currently being examined and will be further developed in the upcoming months.

7The extension of IO-Sets to a situation where some applications are using an ad-hoc file system is currently being
studied — the question to be answered is to what set movements between the PFS and ad-hoc file system belong and
what is its priority
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5. Conclusion

In this prototype deliverable, we presented the software developed to support I/O and data
scheduling decisions in the ADMIRE project. We discussed the design considerations that led
from the API definitions in D4.1 to the actual software implementations, providing details on how
to deploy and use the software packages. While the initial sections of this document describe
the scaffolding needed to materialise the ADMIRE ecosystem, the final section describes the
additional software that will provide actual logic and decision-making driving the I/O Scheduler.

We also presented some preliminary experimental results for the software developed as well
as the control algorithms researched. Specifically, Cargo demonstrated that data transfers can
be made to scale with the number of processes and, as expected, outperform typical cp -based
approaches. For IO-Sets, we showed the precision of its simulator and how the Set-10 heuristic
was found to be quite robust, offering a precise classification even when provided with inaccurate
information. Finally, we demonstrate how separate Cargo instances can be orchestrated with a
simple control algorithm focused on maintaining QoS constraints for PFS bandwidth. Despite its
simplicity, the algorithm proved highly effective at preventing QoS breaches.

The next steps (some of which are already in progress) are to integrate these missing pieces
into the current prototypes and finalise the integration with other ADMIRE components. More
specifically, a version of IO-Sets is planned to be integrated into scord for the purposes of
bandwidth redistribution. The QoS control algorithm presented in Section 4.2 is currently being
added to scord as a fallback QoS enforcement mechanism for those systems not relying on Lustre.
Conversely, a control algorithm for Lustre’s LIME subsystem is currently being designed for those
systems relying on Lustre. Finally, approaches to monitor and control ad-hoc storage capacity
and to provide "just in time" data staging are currently being discussed. The outcomes of these
initiatives, along with the progress made in Task 4.3 w.r.t. in-situ and in-transit data operations,
will be reported in D4.3, WP4’s final deliverable.
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Appendix A

Terminology

• Ad hoc Storage System, ephemeral storage system that only exists in a determined period,
i.e. during a job’s execution.

• CLI, command line interface.

• DRAM, dynamic random-access memory.

• EBNF, Extended BackusNaur Form is a family of metasyntax notations, any of which can
be used to express context-free grammar. EBNF is used to make a formal description of a
formal language such as a computer programming language. They are extensions of the
basic BackusNaur form (BNF) metasyntax notation.

• In situ data, processing the data where it originated.

• In transit data, processing the data when it is moved.

• NORNS, data transfer service for HPC developed at BSC.

• NVM, non-volatile memory.

• PFS, parallel file system.

• POSIX, Portable Operating System Interface, family of standardized functions.

• QoS, Quality of Service.

• RDMA, remote direct memory access.

• RPC, remote procedure call.

• Slurm, job submission system widely used.

• SSD, solid state drive.

• Object store, persistent storage system where data are stored not as files but as objects.
In its canonical implementation Object are immutable and the API is limited to PUT, GET
and DELETE. More sophistical object stores have been developed on the ground of these
concepts such as ADMIRE Data Clay.

• Disaggregated Storage, storage systems where all the storage capabilities are centralized
in dedicated network attached storage servers. This approach allows connected compute
nodes to access a storage capacity without constraints related to the capacity of a single
storage device.

47



ADMIRE APPENDIX A. TERMINOLOGY

• PFS, Parallel File System, type of distributed file system supporting a global namespace and
spread across multiple storage servers.

• Node Local Storage, ability for a compute server to store persistent data on physically local
storage devices.

• Ephemeral Storage, file systems which are making persistent (surviving across system
reboot) but which are designed to be deployed and destroyed over a limited period of time,
from a few hours up to a few months.

• API, Application Programming Interface, a mechanism that enables an application or service
to access a resource within another application or service. The application or service doing
the accessing is called the client, and the application or service containing the resource is
called the server.

• Rest API, such APIs can be developed without constraint and the programming language and
support a variety of data formats. The only requirement is that they align to the following
six REST design principles - Uniform interface, Client-server decoupling, Statelessness,
Cacheability, and Code on demand (optional).

• OSS, an Object Store Server in the Lustre terminology is a computing server in charge of
managing the ingest of data, including generation of the data protection, and shipping these
data to the correct Object Store Target.

• OST, Object Store Target in the Lustre terminology is a storage server accommodating
potentially a large number of hard drives and/or NMVes. The OST write the data received
from the OSS and makes them persistent.

• MDS, MetaData Server.

• MDT, MetaData Target.

• Stripe, an elementary chunk of data according to the Lustre terminology. A large file is split
in multiple stripes and each stripe is sent to an individual OST. The higher the number of
stripes, the higher the parallelism.

• Monitoring Manager,

• Intelligent Controller,

• Monitoring Daemon,

• TBON, Tree-Based Overlay Network,

• PromQL, the query language supported by the Prometheus database. Syntax, documenta-
tion and examples are available here: https://prometheus.io/docs/prometheus/latest/
querying.
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