
H2020-JTI-EuroHPC-2019-1

Project no. 956748

ADAPTIVE MULTI-TIER INTELLIGENT DATA MANAGER FOR
EXASCALE

D5.5
Extra-P Extended with I/O Modelling Capabilities

Version 1.0

Date: February 29, 2024

Type: Deliverable
WP number: WP5

Editor: Ahmad Tarraf
Institution: TUDA

Project co-funded by the European Union Horizon 2020 JTI-EuroHPC research and innovation
programme and Spain, Germany, France, Italy, Poland, and Sweden

Dissemination Level
PU Public

√

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

ADMIRE

Change Log

Rev. Date Who Site Changes

1 13/11/23 Jesus Carretero UC3M Document creation

2 13/11/23 Ahmad Tarraf TUDA Copied main layout

3 15/11/23 Ahmad Tarraf TUDA Added use cases

4 17/11/23 Ahmad Tarraf TUDA Added introduction

5 17/11/23 Jean-Baptiste PARATOOLS Added metric proxy

6 20/11/23 Ahmad Tarraf TUDA Added TMIO

7 21/11/23 Ahmad Tarraf TUDA Added Extra-P description

8 21/11/23 Ahmad Tarraf TUDA Added FTIO description

9 22/11/23 Jean-Baptiste
Besnard

PARATOOLS Added link between metric proxy and Extra-P

10 22/11/23 Francieli Zanon
Boito

INRIA Added I/O Scheduling

11 15/12/24 Ahmad Tarraf TUDA Structure review and Todos added

12 08/01/24 Ahmad Tarraf TUDA Added use case chapter (Chapter 4)

13 10/01/24 Ahmad Tarraf TUDA Adjusted introduction and conclusion

14 21/01/24 Ahmad Tarraf TUDA Refined Chapter 3

15 30/01/24 Ahmad Tarraf TUDA Extended FTIO

16 12/02/24 Ahmad Tarraf TUDA Updated FTIO and TMIO

17 13/02/24 Marc-André Vef JGU Added just in time staging

18 19/02/24 Jean-Baptiste
Besnard

PARATOOLS Description of the Model-Server

19 19/02/24 Marc-André Vef JGU Finalized just in time staging

20 20/02/24 Simone Pernice Unito Added system model use case

21 21/02/24 Taylan Özden TUDA Added job scheduling use case

22 22/02/24 Ahmad Tarraf TUDA First internal revision

23 23/02/24 Guillaume Pallez Inria Added elements in I/O Modeling; pass on I/O-set
experiments

24 26/02/24 Ahmad Tarraf TUDA Second internal revision

25 27/02/24 Jesus Carretero UC3M Document review

26 28/02/24 Ahmad Tarraf TUDA Finalization

1

Executive Summary

Executing large scientific applications efficiently on an HPC system with various resource configurations can be
a challenging task. Upon scaling up an application, performance bottlenecks are often encountered, preventing
the effective usage of such systems. In the context of the ADMIRE project, the performance models generated
by Extra-P are not directly used for spotting scalability bugs, but rather to aid the malleability manager and
the intelligent controller in their decision processes. In particular, these models can be utilised by different
components of the ADMIRE toolchain to adapt various resources and ultimately increase the system perfor-
mance as will be outlined in this deliverable. Previous to the ADMIRE, the performance models generated by
Extra-P were mainly concerned with the scalability of computational or communications parts of the code. To
exploit the full potential of the tool and use it to aid the decision regarding the balance of the resources, the
functionality of Extra-P was extended to additionally considering I/O. Moreover, several components have been
developed and extended in WP5 that further provide the approach in ADMIRE with enhanced monitoring as
well as modelling capability, including, for example, the metric proxy for monitoring and FTIO for predicting
I/O phases.

This deliverable presents the extended functionalities of Extra-P developed in the ADMIRE project. We
described the importance of those extensions and their role in making decisions regarding the resource con-
sumption of an application. We demonstrate the new capabilities of Extra-P based on various applications and
describe the role of the performance models in other components of the ADMIRE toolchain. As the final de-
liverable in this work package, we further provide an overview of the modelling and monitoring components
developed in WP5, alongside their interactions and the established use cases with the other WPs in ADMIRE.

2

CONTENTS ADMIRE

Contents

List of Figures 5

1 Introduction 7

2 Gathering the Monitoring Data 11
2.1 Enabling Job Tracking in the Metric Proxy . 11
2.2 Per Job Profiles . 13
2.3 Generating Extra-P Supported Traces . 13
2.4 Trace Support . 14
2.5 TMIO . 15

3 Modelling I/O in ADMIRE 16
3.1 Continuous Modelling: Refining the Models . 17

3.1.1 From Data to Models . 17
3.1.2 Reliability of I/O Information . 17
3.1.3 Integration With the Intelligent Controller . 18

3.2 Extra-P in ADMIRE . 18
3.2.1 Extra-P Interfaces . 18
3.2.2 Extracting Specific Performance Models . 21
3.2.3 Accessing the Performance Models . 22
3.2.4 Implementing the Model Server in the Metric Proxy 23

3.3 Modelling I/O With Extra-P . 25
3.4 Examples . 27

3.4.1 IMB-IO . 27
3.4.2 IO Skeleton Application . 29
3.4.3 Darshan Support . 31
3.4.4 TMIO and Extra-P: Asynchronous I/O Requirements 32

3.5 FTIO . 34
3.5.1 The Challenge of Finding I/O Phases . 35
3.5.2 Temporal I/O Behaviour . 36
3.5.3 Discrete Fourier Transformation . 36
3.5.4 Outlier Detection . 37
3.5.5 Confidence Metrics . 38
3.5.6 Online Approach: Predicting the Frequency of the I/O Phases at Runtime 39
3.5.7 Examples . 39
3.5.8 FTIO Meets Extra-P . 45

4 Use Cases: Exploiting the Models 46
4.1 Job Scheduling . 46

4.1.1 A malleability scheduling algorithm . 46
4.2 System Model . 49
4.3 I/O Scheduling . 50

3

ADMIRE CONTENTS

4.4 Just-in-Time Staging . 52

5 Conclusion and Future Perspectives 56

List of Acronyms and Abbreviations 57

Glossary 58

4

LIST OF FIGURES ADMIRE

List of Figures

1.1 ADMIRE global architecture showing the relationship as well as the information flow be-
tween the different components of the framework. Using the data gathered in the performance
database, application models are generated in WP5 and are forwarded from there to components
like the malleability manager from WP3 and the intelligent controller from WP6. 7

1.2 ADMIRE global architecture highlighting the components that directly influence or interact
with the performance models from Extra-P. These components are coloured, while the remain-
ing components are grey. Moreover, the data flow from and to Extra-P in WP5 are highlighted
in green. 8

1.3 Lifycle of performance models in ADMIRE. 9

2.1 Layout of the proxy servers as displayed in real-time in the proxy web interface. In this exam-
ple, 32 servers send their data up every second. 11

2.2 Real-time tracking of the global state of jobs on the parallel machine. Each job can run on a
subset of the machine. 12

2.3 List of profiles matching past jobs gathered by command line. 13
2.4 Illustration of trace resampling. In this case, we limited the trace size to 100 KB and observed a

resampling between the two figures, the consequence of the resampling is a doubling of spacing
between points on the x-axis. 14

3.1 Extra-P GUI showing the performance models for the different functions of KRIPKE [27]. . . 19
3.2 Metric proxy HTML interface demonstrating live model generation and evaluation. 24
3.3 Extra-P models for selected syscall functions for NEK5000. 26
3.4 Grafana dashboard showing in real time the execution of the IMB-IO benchmark on the Turin

cluster with 576 ranks. 27
3.5 Scaling behaviour of the function calls pwrite64 and MPI_File_write in terms of size

(in bytes) versus the number of processes. 28
3.6 Scaling behaviour of the execution time (in seconds) versus the number of ranks for low-level

syscalls and high-level Message-Passing Interface (MPI) calls from the same setup. 28
3.7 model interpolation in the metric proxy of Pread_shared from the IMB benchmark. . . . 29
3.8 Measurements traces shown by the proxy for ioskel.4.536870912.15.100writing then

reading 512 MB every 4 seconds for 15 iterations. 30
3.9 Extra-P models displayed by the metric proxy for the execution of the application

ioskel.4.536870912.15.100. 31
3.10 Extra-P models for the total time, the I/O time and the compute time. 32
3.11 Scaling behaviour of the required reading bandwidth BA versus the actual reading bandwidth

TA. 33
3.12 Scaling behaviour of the application time versus the number of MPI ranks. The top part shows

the total compute and I/O time, while the bottom part shows the time spent by the application
waiting (i.e., lost) for the asynchronous read (tar) and write (taw) to finish. 34

3.13 Overview of FTIO. FTIO requires a trace file containing the bandwidth as an input and provides
the frequency and its confidence as an output. Further metrics that build on these results are
also provided. 35

5

ADMIRE LIST OF FIGURES

3.14 Internal FTIO architecture. The dashed lines indicate optional steps. FTIO internally calcu-
lates application-level bandwidth. Afterwards, the dominant frequency is found using DFT and
outlier detection. If autocorrelation is additionally used, the results are merged with the results
from DFT to refine the confidence. 38

3.15 Online approach of FTIO. A file is monitored for changes with FTIO. Whenever new traces are
appended to the file (e.g., through TMIO in the online mode), a new prediction is executed in a
new process. 39

3.16 normalised single-sided power spectrum obtained from FTIO on IOR with 7680 ranks. The red
bar at 1.2 ∗ 10−02 Hz has the highest contribution and represents the dominant frequency in the
signal. The next highest contribution is from the frequency at 2.49 ∗ 10−2 Hz coloured in purple. 40

3.17 Result of the Z-score on IOR with 7680 ranks. As indicated by the red "x" marker, FTIO just
detected a single frequency is an outlier with a high confidence. This outlier has, at the same
time, the highest contribution (see Figure 3.16). The red colour in this figure indicates that the
outlier has also a moderate confidence. 40

3.18 Temporal behaviour of IOR with 7680 ranks execute don the Lichtenberg cluster. The cosine
wave containing the dominant frequency is shown in green. As observed, the I/O phases align
with the drawn cosine wave. 41

3.19 Temporal behaviour of IOR with 7680 ranks drawn alongside the reconstructed signal with a
varying number of frequencies. 42

3.20 Single-sided normalised power spectrum obtained using FTIO on NEK5000 with 1024 ranks.
In this figure, we additionally show the DC offset at 0 Hz. 43

3.21 Result of FTIO on the Darshan profile of NEK5000 with 1024 ranks. The figure shows the
dominant frequency fd = 1.05∗10−4 (green cosine wave) drawn along the original and discrete
signal. 43

3.22 Result of FTIO on the Darshan profile of NEK5000 with 1024 ranks. The figure shows the top
three frequencies (including the DC offset) in the signal. 44

3.23 Result of FTIO on the same trace as in Figures 3.20 and 3.21, however, using DBSCAN rather
than the Z-score for outlier detection. As observed, similar results are obtained. 44

3.24 Scaling behaviour of the prediction (frequency of the I/O phases) from FTIO in Extra-P for
NEK5000. 45

4.1 Our scheduling concept balancing computation vs. I/O exploiting Extra-P models. 46
4.2 GreatNector framework including Extra-P. 50
4.3 Comparison of clairvoyant Set-10, Set-10 with FTIO, Set-10 with 50% error injected to the

FTIO-provided periods, and the original configuration without Set-10. The figures show the
stretch (how much slower jobs were compared to running in isolation: lower is better), the I/O
slowdown (how much slower I/O was compared to isolation: lower is better), and the utilization
(how much of the time was NOT spent on I/O: higher is better). The boxplots (with 1.5*IQR
whiskers) group ten executions. The y-axes do not start at zero and are all different. 52

4.4 The average write throughput for GekkoFS when running IOR with four MPI ranks over the
number of I/O operations. Each process wrote 512 KiB for each of the 1024 I/O operations (or
512 MiB in total). 53

4.5 Normalized single-sided power spectrum from FTIO on the IOR example with GekkoFS. . . . 54
4.6 Temporal behaviour of the signal alongside the top three frequencies presented in it obtained

by executing FTIO on part of the trace. 54
4.7 Result from autocorrelation on the signal. 54
4.8 The average write throughput for GekkoFS when running NEK5000 with 32 MPI ranks (8

nodes) over the number of I/O operations. Four ranks perform I/O every 20 steps out of the 200
steps. 55

4.9 Temporal behaviour of the application-level signal from NEK5000 with GekkoFS. FTIO inter-
nally overlapped the rank-level metrics from Figure 4.8 to obtain the application-level band-
width. FTIO detected a dominant frequency as the green cosine wave depicts. 55

6

CHAPTER 1. INTRODUCTION ADMIRE

1 Introduction

In HPC, large scientific applications are usually executed on huge clusters with a vast number of resources. As
these systems increasingly become more complex and powerful, so do the applications across various domains
(e.g., fluid dynamics, molecular dynamics, and environmental simulations) that try to exploit them as much as
possible. However, scalability bugs can lead to performance bottlenecks preventing the effective usage of such
systems. Consequently, monitoring and modelling applications on an HPC system is considered one of the
essential steps for performance optimisation. Identifying scalability bugs at an early stage of the development
process is an indispensable prerequisite to ensure early and sustained productivity. In this context, performance
modelling plays an essential role, as elaborated later in Chapter 3. Performance modelling has a long research
history in HPC [1,9,12,18,22,29,32,35,36,42,45,50]. For example, Extra-P [12] is an automatic performance-
modelling tool that generates empirical performance models and aids the users in spotting scalability bugs.
Aside from spotting these bugs, performance modelling could also aid scheduling decisions (e.g., for malleable
jobs). In particular, the performance of the application at various scales in regard to different resources (e.g.,
I/O, compute, etc.) is modelled and thus known. Consequently, effective decisions can be made by different
components (job scheduled, I/O scheduler, etc.) with the ultimate goal of improving the throughput of HPC
systems. The aspect is extensively examined and has been realised in the ADMIRE project.

WP4

I/O Scheduler

WP3

Malleability Manager

WP6

Intelligent

Controller

WP2

Ad-hoc Storage

SLURM

I/O state

Back-end storage

QoS Control

Control commands

System state

WP5

Sensing and Profiling

System, storage, application states

Monitoring commands

Monitoring

Distributed

Database

IC

WP7

ApplicationsA
D

M
IR

E

a
p
p

lic
a

ti
o
n

m
a

n
a

g
e

r

QoS Control

I/O malleability decision

Ad-hoc Storage system monitoring

Monitoring: LIME + Paratools TAU

Monitoring:

applications

ADMIRE-enabled

applications + user

hints

WP5

Monitoring

manager

Performance

Database

Startup

HSM data flow

Figure 1.1: ADMIRE global architecture showing the relationship as well as the information flow between
the different components of the framework. Using the data gathered in the performance database, application
models are generated in WP5 and are forwarded from there to components like the malleability manager from
WP3 and the intelligent controller from WP6.

The global architecture of the ADMIRE framework is illustrated in Figure 1.1. As observed, the intelligent
controller acts as the main component forwarding and processing data to the various other components. One
of the key aspects examined in the ADMIRE project is job malleability, which refers to extending or shrinking

7

ADMIRE CHAPTER 1. INTRODUCTION

the resources of a job. In this context, the project distinguishes between compute and I/O malleability. The
malleability manager decides the best-suited configuration for each application based on the selected scheduling
algorithm (see Section 4.1). To make reasonable decisions, the malleability manager needs to consider the
current state of the system, the jobs in the queue, user hints, and the scaling performance of an application.
Consequently, this manager needs performance models that describe how the application’s behaviour changes
at different scales. Moreover, as the malleability manager tries to balance both compute and I/O resources, the
performance models should cover and describe the scaling behaviour of an application in both regards. Once
a decision is taken, it’s forwarded to the job scheduler SLURM and the I/O scheduler from WP4 through the
intelligent controller.

Previous to the ADMIRE project, Extra-P has been used to model the call path of the application, focusing
on computational and communication aspects but excluding I/O. However, recent terms such as the storage
wall [23] try to quantify the I/O performance bottleneck from the application scalability perspective. Indeed,
due to storage’s shared nature and slow improvement compared to other resources on a cluster, I/O contention,
slow I/O, and low I/O performance are often encountered in HPC. One of the main objectives of the ADMIRE
project is to maximise performance by establishing control by creating an active I/O stack that dynamically
adjusts computation and storage requirements through intelligent global coordination. In particular, the AD-
MIRE project has created a feedback loop between control (through the intelligent controller and malleability
manager) and models/measurements from the developed monitoring framework in WP5. As just described,
knowledge of the application I/O performance and the current system I/O load is required to achieve this.

The latter aspect has been the content of Deliverable 5.4 (D5.4). While Deliverable 5.3 (D5.3) describes
how the I/O profiles of an application are gathered. In this deliverable, which is in the direct continuation of
both D5.3 and D5.4, we demonstrate how the gathered data can be used to generate performance models with
Extra-P extending its capabilities to model I/O.

WP4

I/O Scheduler

WP3

Malleability Manager

WP6

Intelligent

Controller

WP5

Sensing and Profiling

Distributed

Database

IC

WP7

ApplicationsA
D

M
IR

E

a
p

p
lic

a
ti
o

n

m
a

n
a

g
e

r

WP5

Monitoring

manager

Performance

Database

Figure 1.2: ADMIRE global architecture highlighting the components that directly influence or interact with
the performance models from Extra-P. These components are coloured, while the remaining components are
grey. Moreover, the data flow from and to Extra-P in WP5 are highlighted in green.

In Figure 1.2, only the components that directly influence or interact with the performance models are
coloured, while the remaining are grey. Moreover, the data flows that are related to Extra-P are highlighted in
green. As part of WP5, the performance models are generated and stored in the performance database. Note
that the intelligent controller can also invoke Extra-P at different intervals to generate performance models
at demand. As an input, the collected application traces through the sensing and profiling module in WP5
are used and converted to profiles as later described in Chapter 2. Note that the detailed approach has been

8

CHAPTER 1. INTRODUCTION ADMIRE

described in Deliverable 5.3. Once these models are generated, they are forwarded to the malleability manager
in WP3 to aid the scheduling decisions. In particular, the performance models can be either generated on-the-
fly or accessed through a Redis database by the intelligent controller. Consequently, the intelligent controller
manages the forwarding of the models on one hand. On the other hand, the intelligent controller can also utilise
the performance models to refine the system model and predict the system’s future behaviour as described in
detail in Section 4.2. Other components, such as the I/O scheduler, could also benefit from the I/O models to
enhance the system performance even further. However, due to I/O variability and changing I/O behaviour,
it often makes sense to analyse phases rather than the entire application behaviour. Consequently, prediction
from tools like FTIO developed in WP5 can be used to help I/O schedulers improve the I/O performance as
described later in Section 4.3.

From an abstract view, the life-cycle of the performance models from Extra-P in the ADMIRE project can
be divided into four stages: monitor, profile, model, and employ. In the first three stages, the performance
models are generated, while in the last stage, the models are utilised by different components of the ADMIRE
framework. In particular, the following actions are performed in each stage:

Monitor: As a first step, the relevant performance metrics need to be collected from the application. This
is done through the developed metric proxy. The collected data are stored in a dedicated trace format,
profiles and a Prometheus database as shown in Figure 1.1. This is further elaborated in Section 2.1.

Profile: To generate performance models, Extra-P required profiles, not traces. Profiles can be grouped to-
gether through different interfaces (e.g., through a command line interface) into a single profile that
contains the application’s behaviour at different scales. This file can be read by Extra-P to generate
performance models. This is further described in Section 2.2.

Model: In the last stage of the model generation process, Extra-P reads the profile file to generate the desired
performance models. That is, for everything that has been traced and consequently turned into profiles,
Extra-P can generate a performance model. To refine the models further the tool can be re-invoked
whenever new data is available to generate and update performance models continuously. Through the
added functionality in the ADMIRE project, the tool is no longer limited to modelling the runtime but
can additionally generate, for example, performance models for the bytes transferred during the I/O
operations at various levels of the software stack. This is explained in detail in Chapter 3.

Employ: After the performance models are generated, they are employed by different components in the AD-
MIRE framework. This is handled in detail in Chapter 4.

Figure 1.3 shows an abstract representation of these stages. As observed, the refining process is executed
whenever new traces are available. Note that the traces are not generated in particular for Extra-P, but for mon-
itoring purposes (e.g., monitor the applications and system state over time). However, through our approach,

Performance

Models

Lifecycle

Model

Trace Employ

Profile

Figure 1.3: Lifycle of performance models in ADMIRE.

9

ADMIRE CHAPTER 1. INTRODUCTION

different components can utilise the same set of traces. Consequently, we reuse the collected traces by grouping
and converting them to profiles. This way, through every execution of an application, further traces are col-
lected, which help refine the models as the profiles are enriched by the newly added measurement points. At the
same time, due to the detailed information contained in the traces ranging from low-level system calls such as
pwrite64 up to high-level calls like MPI_File_write, performance models can be generated with differ-
ent granularity. Finally, as compute and communication calls are traced, performance models can be generated
that show the compute to I/O ratios and describe how resource-demanding different scaling configurations are.
This is especially valuable to components as the malleability manager in WP3 as described in the scheduling
algorithm in Section 4.1. Furthermore, these models are then again employed by the different components
in the ADMIRE project (e.g., the system model in WP6 as described in Section 4.2) to adapt the system and
application behaviours. This again yields traces and the cycle is restarted again.

As mentioned, a new demand for models that describe the period of the I/O phases was observed during the
development of the components, and, thus, at a later point in the project, efforts have been dedicated to achieving
this. In particular, to enhance I/O scheduling in WP4 and burst buffer management, knowledge regarding the
period of the I/O phases was required. As this exceeds the scope of Extra-P, a new tool was developed named
FTIO: Frequency Techniques for I/O. The tool has been previously briefly mentioned in deliverables D4.2,
D5.3, and D6.3. In this deliverable, we cover this aspect in detail in Section 3.5. Furthermore, we provide use
cases in Chapter 4.

This deliverable is structured as follows: In Chapter 2, we elaborate on how the traces are collected and
grouped to generate profiles. We also examine the added functionalities and new interface of the metric proxy.
Consequently, this chapter handles the first two stages of the life-cycle of the performance models. Chapter 3
deals with how performance models are generated with Extra-P (stage three of the life cycle) and closely
examines the added I/O modelling functionalities. We explain our continuous modelling approach, the model
server in the metric proxy, and how the I/O modelling aspect is realised in Extra-P. Starting from Section 3.5,
we examine the tool FTIO and highlight its importance for the ADMIRE project. In Chapter 4, we demonstrate
the employment of the performance models generated in WP5 in the remaining WPs from ADMIRE based on
use cases. Finally, we provide a conclusion in Chapter 5 and handle future perspectives and research directions.

10

CHAPTER 2. GATHERING THE MONITORING DATA ADMIRE

2 Gathering the Monitoring Data

In D5.3, we have described how we explored, simulated, and measured I/O capabilities on a given system.
Moreover, we described the I/O profiling interface in detail. Since this deliverable, the monitoring facilities
have drastically evolved, leading to improved insights into the running program on the machine. Indeed, to fit
in the ADMIRE monitoring loop concept, we had to reconsider our software approach to further extend the
monitoring capabilities of the system. The previous monitoring methodology did not provide either job-level
data or traces for each job in a convenient manner. However, starting from the design of the previous proxy,
we were able to work on a reduction tree derived from the ideas pioneered by LIMITLESS to provide real-
time machine-wide job tracking. This capability comes in complement to the previous profile support and now
allows: (1) real-time tracking of the current application state and (2) backtracking in time to obtain the state
of the given application. In addition, the profiles are now stored in a common store, which is exposed with a
proper API. This API allows the Intelligent Controller (IC) to query data in a scalable and portable manner. In
this chapter, we are going to describe these aspects in more detail, providing explanations of the changes and
their underlying motivation for each of the aforementioned components.

2.1 Enabling Job Tracking in the Metric Proxy

Figure 2.1: Layout of the proxy servers as displayed in real-time in the proxy web interface. In this example,
32 servers send their data up every second.

Up to D5.3, our monitoring infrastructure was not able to track jobs; it was aimed at monitoring all the

11

ADMIRE CHAPTER 2. GATHERING THE MONITORING DATA

nodes in a scalable manner, and the job information was stored separately, requiring a slicing in both space
and time of the performance data to obtain the corresponding time series for a given job. This was a working
approach, however, and as shown in Figure 2.1, we decided to simplify it drastically by relying on a dynamic
Tree-Based Overlay Network (TBON) to perform resource aggregation. In this new layout, the multiple jobs
on the system, even distributed, are able to contribute metrics to the local proxy, which in turn streams data to
the root proxy that is in charge of persisting the data.

On the Prometheus side, we are still able to consume the performance data, keeping them for the long term,
a design choice we made early in the project and that we still find valid. What changes here is the number of
required Prometheus servers, indeed, the previous design required one server per node and thus led to overhead
on the compute nodes. Conversely, our new model exposes the root visibility of all the jobs with a large number
of Prometheus endpoints (one per node, one per job, and one summing all of those). The "main" endpoint is
tracked in Prometheus, but nothing prevents tracking at finer-grain with the difference that now only a single
scraping endpoint is required, drastically improving the scalability of the model.

The main consequence of this model is the availability of trace data in real-time with a relatively low
sampling period. This was a requirement of the FTIO; the frequency modelling approach (see Section 3.5),
which needed real-time counter data to provide its predictive insights. This work, therefore, simplified the
implementation of real-time I/O modelling as the previous spatial and temporal slicing is now unneeded. All
data are now available using JSON HTTP endpoints, which can then be shown in a graphical user interface,
also embedded in the proxy itself. This design allows the proxy to be user-friendly and open to various data
consumers of the ADMIRE projects – namely the Intelligent Controller.

Figure 2.2: Real-time tracking of the global state of jobs on the parallel machine. Each job can run on a subset
of the machine.

Figure 2.2 presents the list of all running jobs on the supercomputer, this list is built dynamically and
updated every second, showing all processes contributing data. In addition to the job granularity, we have kept
the node-level granularity with "Jobs" named "Node: XXX" with XXX as the hostname of the given node.
This allows us not to give up on the spatial view we previously emphasised in ADMIRE. Second, a "main" job
gathers all the metrics in a single view, practically watching the whole system in a single place.

12

CHAPTER 2. GATHERING THE MONITORING DATA ADMIRE

2.2 Per Job Profiles
In our previous deliverable, we described how profiles were stored for each job. This is still the case for the new
version of the proxy, all jobs are eventually stored in the filesystem, including the final counter snapshot and a
job description. One difference is that thanks to the TBON, it is not needed to perform a filesystem reduction,
all is done by the root proxy, which can save the performance data once the job finishes, as shown in Figure
2.3.

Figure 2.3: List of profiles matching past jobs gathered by command line.

These profiles play an important role in the Extra-P modelling capabilities as they are used to generate the
performance models. A performance model is a regression of the various points in the profile to build a fitting
function matching the scaling behaviour of the given application. Applications are gathered by command, and
then, at any moment, the end user is able to request the generation of a model for the currently running job. The
principle is that the command line of the currently running job is hashed and compared to existing models in
the model store, matching the same command. If the model is available, it is returned directly for consumption
by Extra-P, as discussed in the following section.

2.3 Generating Extra-P Supported Traces
As previously mentioned, profiles are stored for each job when they end by the root proxy. Each time a new
profile is stored, all the previous jobs with the same command are scanned, and the corresponding JSON Lines
(JSONL) file is generated as described later in Section 3.3 in details. This data is made available on an HTTP
endpoint for both currently running jobs (looking for past profiles of the same command) and past jobs:

$> curl http://127.0.0.1:1337/profiles/extrap?jobid=1288306689

13

ADMIRE CHAPTER 2. GATHERING THE MONITORING DATA

.

.

.

.

.

.
{"params":{"size":1.0},"metric":"proxy_component_temperature_celcius","callpath":"{component=\"pch_haswell

temp1\"}","value":55.5}↪→
{"params":{"size":2.0},"metric":"proxy_component_temperature_celcius","callpath":"{component=\"pch_haswell

temp1\"}","value":55.5}↪→
{"params":{"size":3.0},"metric":"proxy_component_temperature_celcius","callpath":"{component=\"pch_haswell

temp1\"}","value":56.0}↪→
{"params":{"size":4.0},"metric":"proxy_component_temperature_celcius","callpath":"{component=\"pch_haswell

temp1\"}","value":56.0}↪→
{"params":{"size":1.0},"metric":"time","callpath":"{scall=\"getcwd\"}","value":0.000015000000000000002}
{"params":{"size":2.0},"metric":"time","callpath":"{scall=\"getcwd\"}","value":0.000024000000000000004}
{"params":{"size":3.0},"metric":"time","callpath":"{scall=\"getcwd\"}","value":0.000042}
{"params":{"size":4.0},"metric":"time","callpath":"{scall=\"getcwd\"}","value":0.000054}
{"params":{"size":1.0},"metric":"hits","callpath":"{scall=\"sched_getaffinity\"}","value":3.0}
{"params":{"size":2.0},"metric":"hits","callpath":"{scall=\"sched_getaffinity\"}","value":6.0}
{"params":{"size":3.0},"metric":"hits","callpath":"{scall=\"sched_getaffinity\"}","value":9.0}
{"params":{"size":4.0},"metric":"hits","callpath":"{scall=\"sched_getaffinity\"}","value":12.0}

In turn, this JSONL description is passed to Extra-P, which can generate performance models as further
described in Chapter 3 of this document.

2.4 Trace Support
Traces are a new aspect of the metric proxy. They were driven by the need to feed FTIO with real-time
performance data. It is a complement to the Prometheus approach with the notable difference that traces are
not dependent on the Prometheus server to be consumed; this allows easier prototyping of analysis on models
in a post-mortem fashion. Initially, we devised that traces were too large to be stored long-term, however, we
developed a new way of tracing profiles. Indeed, the Metric Proxy is built around the notion of profiles over
time, also called snapshots in the performance field. These snapshots are the current state of the measurement
counters, either gauges varying over time or monotonic counters.

(a) 1 second sampling period. (b) 2 seconds sampling period.

Figure 2.4: Illustration of trace resampling. In this case, we limited the trace size to 100 KB and observed a
resampling between the two figures, the consequence of the resampling is a doubling of spacing between points
on the x-axis.

However, as shown in Figure 2.4, these snapshots have summative proprieties, meaning that starting with a
trace at a given sampling rate, we can halve the sampling rate by averaging the gauges and keeping the largest
counter. Doing such at any moment, it is possible to halve the current trace, by multiplying by two the sampling
period. It means our traces start at a high frequency (a snapshot per second) up to the point they exhaust their
storage space (32 MB in our current configuration). When this is the case, the frequency is divided by two, and
the trace is folded in two, freeing half the used space by practically resampling the existing trace. This adaptive
approach then attempts to keep the highest sampling frequency while maintaining a reasonable storage budget

14

CHAPTER 2. GATHERING THE MONITORING DATA ADMIRE

for these traces. Another optimisation is storing data in binary format, avoiding a costly JSON overhead. As
far as traces are concerned, we propose the following endpoints:

• /trace/list: list of available traces with their job description

• /trace/read?job=[JOBID]: read all events in a given trace identified by its jobid

• /trace/plot?job=[JOB]&filter=[METRIC NAME]: get the values of the given metric over time

• /trace/metrics?job=[JOB]: list metrics in a given trace

While profiles and their translation in Extra-P JSONL format were intended for performance modelling of
counters in a cross-job fashion, i.e., over the scaling of these jobs, the trace has a different intent. Indeed, the
trace was designed to provide FTIO, which is, as explored in further detail in Section 3.5, a frequency analysis
toolkit for modelling temporal signals. As such the availability of a high-frequency signal for all of the metrics
collected in the ADMIRE project is critical as it allows capture periodicity in the various signals at higher
frequencies due to the Nyquist theorem, tying the sampling frequency to the maximum frequencies observed in
the underlying signal.

2.5 TMIO
Performance models are essential for the ADMIRE approach as described later in Chapter 4. The monitoring
framework previously described in this chapter and developed in the scope of the ADMIRE project is capable
of capturing the traces of an application. Those traces are then merged to generate a single profile providing
thereby measurements at different scales. The generated file can then be easily imported into Extra-P to gener-
ate a performance model for the application. While this full-blown solution is ideal for the approach followed
in ADMIRE, we aimed as well at providing a more lightweight solution that can be easily deployed on arbitrary
systems. In particular, for example, FTIO only requires very little data (just the bandwidth over time as de-
scribed later in Section 3.5). Thus, having all the information the metric provides can be too much, depending
on the use case. Consequently, we developed a C++ library that can be easily attached to an application using
the LD_PRELOAD mechanism. The tool is called TMIO: Tracing MPI-IO. As the name implies, and contrary
to the previous approach, the functionality of this library is limited to intercepting high-level MPI calls using
the PMPI interface.

Through intercepting MPI-IO calls, TMIO can gather metrics on a per-rank basis. This includes the start
and end times of the I/O operations and the number of bytes transferred. The library supports two modes: online
and offline gathering of data. In the offline mode, the library is attached using the LD_PRELOAD mechanism.
Once the application terminates, i.e., at MPI_Finalize, a file (MsgPack, JSON, or JSONL) is generated
containing the collected information. In the online mode, two lines must be added to an application: one to
include the library and one to indicate when the data is flushed to a file. The newly collected data is appended
to the file whenever the latter line is researched. This data can be directly processed by FTIO as explained
later in Section 3.5. To obtain application-level metrics, like the total bandwidth or the time consumed by the
application, the rank-level metrics are aggregated internally in FTIO. As this not occurs on the node where the
application code is executed, but where FTIO is running, TMIO has a very low footprint on the application.

TMIO is publicly available on GitHub: https://github.com/tuda-parallel/TMIO/. Together
with FTIO, TMIO was used for the I/O scheduling use case (Set-10) as described in Section 4.3.

15

https://github.com/tuda-parallel/TMIO/

ADMIRE CHAPTER 3. MODELLING I/O IN ADMIRE

3 Modelling I/O in ADMIRE

As mentioned in the introduction in Chapter 1, performance modelling has a long research history in HPC [1,9,
12,18,22,29,32,34–36,42,45,50]. A performance model is a mathematical formula expressing a performance
metric of interest, such as execution time or energy consumption, as a function of one or more execution
parameters (e.g., the size of the input problem or the number of processors). No models are perfect: they are
a trade-off between the collection of inaccurate information and the simplicity needed to be able to interpret
them [34]. These models are often used to examine the scaling behaviour of an application or specific call paths
and spot scalability bugs.

While there are various performance modelling tools in the HPC domain, Extra-P is an automatic
performance-modelling tool that supports the user in identifying these bugs by generating empirical perfor-
mance models that predict the scaling behaviour of the different parts of an application. Thus, for each call path
of an application, Extra-P generates a performance model showing its scaling behaviour at different resource
configurations (usually the number of processors) and optionally other parameters (problem size, etc.). The
tool has a long research history, with recent updates adding noise-resilient empirical performance modelling
capabilities based on Deep Neural Networks [42] and a strategy to reduce measurement efforts [41]. While this
performance modelling tool is usually concerned with the scaling behaviour of the compute/communications
functions, I/O functions are often overlooked. However, this depends on the data gathered and subsequently
provided to Extra-P, rather than being a limitation of the tool itself.

To balance the resource consumption of an application, as is our intention in ADMIRE, knowing the scaling
behaviour of the applications requires knowing the scaling behaviour of the compute/communications functions
as well as the I/O functions. Moreover, Extra-P usually shows the scaling behaviour of the execution time as a
function of the number of processes. However, this does not paint the full picture, especially when analysing
I/O. When considering I/O, knowing the scaling behaviour in terms of the total transferred bytes can be bene-
ficial to optimise the application execution, especially in the presence of novel storage components like burst
buffers exploited in the ADMIRE project. For example, knowing how many bytes the applications write at
different scales could influence the kind of burst buffer (shared or per node) used and aid the decision on how
many times the burst buffers need to be flushed. At the same time, the total times (e.g., total compute time
and total I/O time) are also needed to examine how resource-demanding an application is at different scales.
Together, these models could be very valuable for I/O contention avoidance strategies, job scheduling, and,
ultimately, increased system performance.

To aid the different components of the ADMIRE project in their decision-making, Extra-P was extended
to model the I/O behaviour of an application. In this chapter, we describe the extensions and the added func-
tionality in detail. We start by describing the global context of continuous modelling and its importance for
the ADMIRE project (Section 3.1). Next, we describe Extra-P, its added functionalities, the model extraction,
and its connection to the metric Proxy throughout Section 3.2. In Section 3.3, we describe how Extra-P can be
used to generate I/O models from JSONL files as, for example, provided by the metric proxy (see Section 2.3).
In Section 3.4, we demonstrate its applicability based on real applications. Furthermore, we demonstrate how
performance models can be generated outside the scope of ADMIRE, using Darshan traces as explored in Sec-
tion 3.4.3 or to model the I/O requirements of applications with asynchronous I/O Section 3.4.4. Finally, we
examine FTIO, a tool that allows us to predict the period of the I/O phases in Section 3.5, and describe the
gained benefits for the project.

16

CHAPTER 3. MODELLING I/O IN ADMIRE ADMIRE

3.1 Continuous Modelling: Refining the Models
One of the goals of the ADMIRE project is to enable the malleability of parallel applications concerning their
I/O behaviour. To do so, we deployed a dedicated measurement infrastructure which aims at being integrated
into the supercomputer as an always-on service. This metric proxy, which was the object of Chapter 2, has been
designed to act as a model server (detailed in Section 3.2.4) for the rest of the ADMIRE ecosystem of tools.
More practically, it constantly transforms performance data into more compact metrics as processed by the
various advanced modelling from the project, namely Extra-P and FTIO for parametric and frequency-domain
modelling. This approach, that we called continuous modelling, takes advantage of the management of the full
instrumentation chain and a close integration between the tools.

As handled in Chapter 2, the required data for model generation can be collected by profiling an application.
By continuously parsing the data from the metric proxy whenever new profiles are available, the models are
continuously refined. This is especially relevant for the ADMIRE project, as more and more profiles are
gathered with every execution of the application on the system. Thus, the collected data can be leveraged
in this toolchain. The obtained performance models are then used to aid different components in their decision-
making, closing the feedback loop and, consequently, the life-cycle of the performance models as shown in
Figure 1.3 from Chapter 1.

3.1.1 From Data to Models
As its name implies, the proxy is mostly a data-forwarder with the capability of aggregating several metrics
both spatially (over the machine with the TBON) and temporally with good scalability. These metrics are then
persisted in both traces (intended for FTIO) and profiles (intended for Extra-P). As such, these stored data
can be transparently forwarded to the respective tools to generate models. A model is an understanding of the
behaviour of a given application over various parameters, in most cases, we focus on the number of processes (or
size) and the temporal behaviour – identifying phases which are of uttermost importance for I/O prediction.
With a global view of the system, a new profile is added each time a job finishes. Each time a profile is added,
the model is automatically refined in the background by invoking the respective tools. Eventually, queries can
be made on this model to infer the behaviour of the application with parameters outside of the already explored
space – exploiting the projective capability of the models extracted by the measurement chain.

As far as data are concerned, the proxy gathers metrics of several types at various granularity. As such, both
node-level metrics (memory, load, disk space) and per-job metrics are collected conjointly. Extra-P models are
generated for jobs as they require profiles, which are generated on job termination. Whereas, traces can be
queried on any job or running node. At the job level, interface calls are tracked, including (I/O syscalls,
MPI calls, and ad-hoc performance). The proxy will greedily generate models for all the metrics it collects.
Moreover, the accuracy of the models is judged using the experimental data and metrics such as the RSS.

3.1.2 Reliability of I/O Information
There are many parameters that can be used and measured to describe I/O behaviour. Not all parameters can be
trusted similarly, and an algorithmic strategy needs to consider this. We provide several examples [5]:

• The number of compute resources used by each application can be obtained from the resource manager.
It is easily obtained and reliable.

• Aggregated information such as the total amount of transferred data and compute time of an application
can be obtained from previous runs, for example, with profiling tools, such as Darshan [13], or provided
by the user. In both cases, the actual observed values could vary, and this data is only semi-reliable.

• For an application, obtaining its bandwidth as a function of the number of I/O resources requires multiple
previous runs and is naturally sensitive to variability. The system could accumulate this information over
time (so it would only be available to some of the running applications), or the user could provide it (less
reliable).

17

ADMIRE CHAPTER 3. MODELLING I/O IN ADMIRE

3.1.3 Integration With the Intelligent Controller
Eventually, as depicted in Figure 1.2, those insights, acquired and refined from the ADMIRE always-on mea-
surement chain, are consumed by the Intelligent Controller, the core of the ADMIRE project. Practically, a
Mercury [44] interface is exposed by the proxy, allowing it to directly make high-performance requests to the
model server. These requests are intended to guide the malleability decision outlining performance behaviour
over scales and time (phases).

3.2 Extra-P in ADMIRE
Extra-P uses measurements of various performance metrics at different execution configurations as input to
generate performance models of code regions (including their calling context) as a function of the execution
parameters. This implies that the modelling results depend on the profiles used and that performance models
can only be generated for the functions profiled. Consequently, only the scaling behaviour of these functions
can be examined. To generate performance models, Extra-P requires repeated performance measurements. It
is recommended that at least five measuring points per parameter should be performed.

In a typical workflow with Extra-P, the user would execute an application on a cluster with a profiler (for
example, Score-P) to gather the performance metrics. After several runs, the gathered performance metrics
can be passed to Extra-P, which generates a performance model for the different call paths of an application.
The user would then spot the scalability bugs by examining the performance models in Extra-P’s GUI, adapt
the poor scaling parts of the code, and repeat the experiments to see if the bug has been fixed. Thus, in this
optimisation cycle, the user receives input from Extra-P and adapts the code with the optimisation target of
improving the application’s performance.

However, in the context of the ADMIRE project, Extra-P is used differently. Different components in
ADMIRE receive the performance models and try to make effective decisions with the target to balance the
system resources and the application execution simultaneously. As there is typically no human in this loop, the
programming interface of Extra-P was used. Moreover, the overall performance regarding different resources,
rather than call-path-specific information, is needed. Starting from the user interfaces of Extra-P (Section 3.2.1),
we explain how specific performance models can be extracted (Section 3.2.2) and how they are generally
made accessible in the ADMIRE framework (Section 3.2.3). As the monitoring proxy is a special component
that integrates Extra-P into the model server, we described in Section 3.2.4 how we further improved the
accessibility of the models through a model sever, which is linked to the metric proxy.

3.2.1 Extra-P Interfaces
For a typical user, Extra-P provides two user interfaces: the GUI and the command line interface. To start
the GUI, the command extrap-gui is executed. This opens a window and allows the user to load the
file/folder containing the profiles through the toolbar. Additionally, Extra-P allows the user to pass command
line arguments when starting the GUI to load the files/folders directly1. The GUI of Extra-P is shown and
explained in Figure 3.1 for the application KRIPKE [27].

Through the metric selection tab, different metrics can be selected. This example includes the met-
rics: time, min_time, max_time, various PAPI counters (e.g., PAPI_FP_INS) and the bytes received (during
MPI_Testany) and sent (during MPI_Isend) in the Sweep kernel. Figure 3.1 only shows the performance
models for the execution time.

The second user interface is the command line interface2, which can be accessed using the extrap com-
mand. Various arguments are available, including specifying:

• the file type (e.g., --json, --text, etc.),
1https://github.com/extra-p/extrap/blob/master/docs/quick-start.md#

graphical-user-interface
2https://github.com/extra-p/extrap/blob/master/docs/quick-start.md#

command-line-interface

18

https://github.com/extra-p/extrap/blob/master/docs/quick-start.md#graphical-user-interface
https://github.com/extra-p/extrap/blob/master/docs/quick-start.md#graphical-user-interface
https://github.com/extra-p/extrap/blob/master/docs/quick-start.md#command-line-interface
https://github.com/extra-p/extrap/blob/master/docs/quick-start.md#command-line-interface

CHAPTER 3. MODELLING I/O IN ADMIRE ADMIRE

Figure 3.1: Extra-P GUI showing the performance models for the different functions of KRIPKE [27].

• an Extra-P experiment from a previous execution (--experiment),

• the aggregation of the values (default is mean), and

• the desired modelling technique (--modeller <technique>).

By default, Extra-P prints the performance models on the console. Different print options are available,
which can be specified using the --print options. Executing extrap -h prints all options available.
Below, the output on the console is shown:

$> extrap -h

usage: extrap [-h] [--version] [--log {debug,info,warning,error,critical}]
(--cube | --extra-p-3 | --json | --talpas | --text | --experiment)
[--scaling {weak,strong}] [--median]
[--modeler {multi-parameter,default,basic,refining}]
[--options KEY=VALUE [KEY=VALUE ...]]
[--help-modeler {multi-parameter,default,basic,refining}] [--out OUTPUT_PATH]
[--print {all,callpaths,metrics,parameters,functions,FORMAT_STRING}]
[--save-experiment EXPERIMENT_PATH] [--model-set-name NAME]
FILEPATH

Extra-P, automated performance modeling for HPC applications

Positional arguments:
FILEPATH Specify a file path for Extra-P to work with

Optional arguments:
-h, --help Show this help message and exit
--version Show program's version number and exit
--log {debug,info,warning,error,critical}

Set program's log level (default: warning)

Input options:
--cube Load a set of CUBE files and generate a new experiment (default: False)
--extra-p-3 Load data from Extra-P 3 (legacy) experiment (default: False)
--json Load data from JSON or JSON Lines input file (default: False)
--talpas Load data from Talpas data format (default: False)
--text Load data from text input file (default: False)
--experiment Load Extra-P experiment and generate new models (default: False)

19

ADMIRE CHAPTER 3. MODELLING I/O IN ADMIRE

--scaling {weak,strong}
Set weak or strong scaling when loading data
from CUBE files (default: weak)

Modeling options:
--median Use median values for computation instead of mean values (default: False)
--modeler {multi-parameter,default,basic,refining}

Selects the modeler for generating the performance models (default:
default)↪→

--options KEY=VALUE [KEY=VALUE ...]
Options for the selected modeler (default: {})

--help-modeler {multi-parameter,default,basic,refining}
Show help for modeler options and exit (default: None)

Output options:
--out OUTPUT_PATH Specify the output path for Extra-P results (default: None)
--print {all,callpaths,metrics,parameters,functions,FORMAT_STRING}

Set which information should be displayed after modeling. Use one of {all,
callpaths, metrics, parameters, functions} or specify a formatting string
using placeholders (see
https://github.com/extra-p/extrap/tree/v4.1.0-al
pha2/docs/output-formatting.md). (default: all)

--save-experiment EXPERIMENT_PATH
Saves the experiment including all models as Extra-P experiment (if no
extension is specified, '.extra-p' is appended) (default: None)

--model-set-name NAME
Sets the name of the generated set of models when outputting an experiment
(default: 'New model') (default: New model)

As described in the help manual of Extra-P, the experiments can be saved with the --save-experiment
flag. The GUI provides similar options; When clicking on "File > Save experiment", the experiment presented
in Figure 3.1 can be stored. With kripke.extra-p containing the exported Extra-P experiment from the
GUI, the experiment can be read by Extra-P as well through the command line interface by executing:

$> extrap --experiment kripke.extra-p

This generates performance models for all call paths, specified parameters, and sampled metrics. For this
example, in particular, this prints the following output on the console:

Callpath: PARALLEL
Metric: visits
Measurement point: (8.00E+00,2.00E+00,3.20E+01) Mean: 1.00E+00 Median: 1.00E+00
Measurement point: (8.00E+00,2.00E+00,6.40E+01) Mean: 1.00E+00 Median: 1.00E+00
...
Measurement point: (3.28E+04,1.20E+01,1.60E+02) Mean: 1.00E+00 Median: 1.00E+00
Model: 1.0000000000000024
RSS: 8.95E-28
Adjusted R^2: 1.00E+00

...
...

Callpath: PARALLEL->Solve->Sweep->MPI_Irecv
Metric: visits
Measurement point: (8.00E+00,2.00E+00,3.20E+01) Mean: 1.20E+04 Median: 1.20E+04
Measurement point: (8.00E+00,2.00E+00,6.40E+01) Mean: 1.20E+04 Median: 1.20E+04
...
Measurement point: (3.28E+04,1.20E+01,1.60E+02) Mean: 2.32E+04 Median: 2.40E+04
Model: 11250.000000000005 + 900.0000000000003 * log2(p)^(1.0)
RSS: 3.24E+08
Adjusted R^2: 0.00E+00

Metric: time
Measurement point: (8.00E+00,2.00E+00,3.20E+01) Mean: 2.47E-01 Median: 2.45E-01
Measurement point: (8.00E+00,2.00E+00,6.40E+01) Mean: 2.50E-01 Median: 2.46E-01

20

CHAPTER 3. MODELLING I/O IN ADMIRE ADMIRE

...
Measurement point: (3.28E+04,1.20E+01,1.60E+02) Mean: 5.51E-01 Median: 5.18E-01
Model: 0.20798724304290037 + 0.017867804631285397 * log2(p)^(1.0) +

0.005179387204829805 * log2(d)^(1.0) + 2.9500644858418412e-06 * g^(2.0)↪→

RSS: 1.32E-01
Adjusted R^2: 8.77E-01

...

Similar to the GUI, the different metrics are presented for each call path. Moreover, nested call paths
are specified using the arrow operator (->). Note that we only showed a very small portion of the outputted
text. For each function, the metric is provided first, followed by the measurement points. The performance
model is provided afterwards (cf., Model) in addition to statistical quality control metrics: the residual sum
of squares (RSS) and the adjusted coefficient of determination (Adj.R2). The Adj.R2, for example, shows
how well the found model replicates the measurements in the conducted performance measurements while also
acknowledging the complexity of the found performance model.

While it is possible to extract the desired performance model by parsing the output of Extra-P (e.g., using
the shell command grep), another way is to rely on the Python interface of Extra-P, as outlined in the next
section.

3.2.2 Extracting Specific Performance Models
Since Extra-P is developed in Python, its modules can be easily imported, and custom functions can be deployed
for specific purposes. This brings the advantage that the performance models are available in Python and can
easily be evaluated at specific measurement points. With the JSONL file test1.jsonl from the Extra-P
GitHub3, the code that can (1) extract specific metrics or (2) iterate over all of them looks as follows:

1 # Imports
2 from extrap.entities.callpath import Callpath
3 from extrap.entities.metric import Metric
4 from extrap.fileio.file_reader.jsonlines_file_reader import(
5 read_jsonlines_file)
6 from extrap.modelers.model_generator import ModelGenerator
7 import numpy as np
8

9 # Load the JSONL data. For different file formats, there are
10 # different read libraries in extrap.fileio
11 experiment = read_jsonlines_file("./data.jsonl")
12

13 # Initialize model generator
14 model_generator = ModelGenerator(experiment)
15

16 # Create models from data
17 model_generator.model_all()
18

19 # ------ At this point, the models are generated
20 # Next, let's see how to evaluate them
21

22 # 1) Specify the metric and call path, e.g., default and root, respectively
23 cp0 = Callpath("<root>"), Metric("<default>")
24 pm = model_generator.models[cp0].hypothesis.function
25 print(f"Model evaluated at x = 5 and y = 5:\n{pm.evaluate([5,5])}\n")
26

27 # 2) Or iterate over all of them:

3https://github.com/extra-p/extrap/blob/master/tests/data/jsonlines/test1.jsonl

21

https://github.com/extra-p/extrap/blob/master/tests/data/jsonlines/test1.jsonl

ADMIRE CHAPTER 3. MODELLING I/O IN ADMIRE

28 for model in model_generator.models.values():
29 # Measurment points
30 pts = model.measurements
31 print(f"Measurement points are:\n{pts}\n")
32

33 # Evaulated function @ measurement points
34 pred = model.predictions
35 print(f"Prediction points are:\n{pred}\n")
36

37 # The actual model
38 print(f"Model is:\n{model.hypothesis.function}\n")
39

40 # Evaluate at specific points
41 # Here, data.jsonl is a 2D data set, hence, a 2d array must be provided
42 m = model.hypothesis.function.evaluate(
43 np.array([[1, 24, 58], [1, 29, 30]]))
44 print(f"Model evaluated at x = [1 24 58] and y = [1 29 30] is:\n{m}\n")
45

46 # Or evaluate just at a single point [x,y]
47 pm = model.hypothesis.function.evaluate([2, 3])
48 print(f"Model evaluated at x = 2 and y = 3:\n{pm}\n\n")

As the code shows, the models are generated with the single function call to ModelGenerator with an
experiment as the input argument. Afterwards, the models can be easily extracted by specifying the function
name and the metric of interest (lines 23-24) or by iterating over all models (lines 28-48).

3.2.3 Accessing the Performance Models
In the context of the ADMIRE project, we initially provided two ways to access the performance models before
the development of the model server (see Section 3.2.4). The first way is that the Intelligent Controller can
trigger Extra-P to generate performance models on demand. In particular, the Intelligent Controller gains access
through the interface described in the last section. The second way is through a Redis database. As Extra-P
is written in Python, and Redis provides a Python interface, storing the performance models is straightforward
using, for example, this script:

1 # Import
2 from extrap.entities.experiment import ExperimentSchema
3 from extrap.entities.callpath import Callpath
4 from extrap.entities.metric import Metric
5 from extrap.fileio.jsonlines_file_reader import read_jsonlines_file
6 from extrap.modelers.model_generator import ModelGenerator
7 import numpy as np
8 import redis as rd
9

10

11 experiment = read_jsonlines_file('./data.jsonl')
12 model_generator = ModelGenerator(experiment)
13

14 # Create models from data
15 model_generator.model_all()
16

17 redis = rd.Redis(host='localhost', port=6379, decode_responses=True)
18

19 callpaths = ''
20 metrics = ''
21 models = ''

22

CHAPTER 3. MODELLING I/O IN ADMIRE ADMIRE

22 for key,model in model_generator.models.items():
23 callpaths += key[0].name + '\n'
24 metrics += key[1].name + '\n'
25 models += str(model.hypothesis.function) + ' --- '
26

27 redis.hset('Application_X', mapping={
28 'callpath': callpaths,
29 'metric': metrics,
30 'model': models,
31 })
32

33

34 redis.hgetall('Application_X')
35

As shown, the models are merged into a single string and stored at line 27 with the application name as
a hash. While accessing the performance models becomes relatively easy, this shows the disadvantage of this
approach as well: The hash key (here Application_X) can be quite complex and long as it must allow to
distinguish simulation performed with different command line options, input files, etc. One way of realising
this aspect is by hashing the application executable. Other options are currently still examined in the project.

3.2.4 Implementing the Model Server in the Metric Proxy
To complement these manual integrations of Extra-P, we created a fully automated version of the continuous
modelling approach in the metric proxy. Unlike previous examples relying on calling in the Python code
of Extra-P, this implementation extracts the models (i.e. the equations from the output of Extra-P and then
evaluates them in the metric proxy). This has the advantage of exposing Extra-P models coherently with the
rest of the ADMIRE components and also provides faster model evaluation times as the proxy is a compiled
binary.

The updated proxy version now possesses the capability to gather data points from various program exe-
cutions. These collected data points are referred to as profiles and are transmitted to Extra-P in the form of a
JSONL file. However, for these data points to be effectively utilised, it was necessary to enable the projection
of values onto the models that Extra-P can construct from them. Consequently, by transmitting the JSONL
file to Extra-P and establishing a connection between its output and the Metric Proxy, we have successfully
established a model server.

The fundamental concept of a model server lies in its automation of the projection. On one hand, each
new profile is intended to be incorporated into the reference model for a specific program. This is achieved
by appending the JSONL file (as described in the preceding section) whenever a new profile for a particular
program is added to the profile store. On the other hand, the proxy maintains an in-memory snapshot of the
Extra-P model and updates it whenever there is a change in the JSONL file (by examining the metadata of
the JSONL file and comparing it to the most recent model generation). This caching mechanism is essential
as the process of Extra-P interpolation across numerous metrics can be time-consuming (typically around 30
seconds). By adopting this approach, we can deliver a real-time stream of projected points, utilising the pre-
fetched model, to the Intelligent Controller.

Internally, this materialises as the following HTTP interfaces at the server level:

• profiles/points?jobid=X: Retrieves the values corresponding to the execution size for all met-
rics. This constitutes the known execution points of the application.

• model/get?jobid=X: Retrieves the Extra-P models for jobs corresponding to a given JOBID
(matched by command-line). Models include the equation and the modelling error, indicating how well
the model aligns with the data points.

• model/evaluate?jobid=X&metric=X&size=X: Interpolates a point using the Extra-P model at
a given size, utilizing the Extra-P model interpolation.

23

ADMIRE CHAPTER 3. MODELLING I/O IN ADMIRE

• model/plot?jobid=X&metric=X&start=X&end=X&step=X: Evaluates the Extra-P model
across a range of values simultaneously. This functionality is employed to plot both the profile/points
and the model on the same graph, providing a view similar to that of Extra-P.

Furthermore, alongside these JSON-based HTTP endpoints, we have incorporated Mercury endpoints to
facilitate high-performance RPC-based communication with the Intelligent Controller. The primary function
provided is the ability to assess a specific metric at a given size, akin to the functionality offered by model/e-
valuate in the HTTP interface.

In summary, the proxy now updates the JSONL file targeting Extra-P each time a job finishes by aggre-
gating all existing profile values. Additionally, a caching mechanism is implemented to store results when
accessing the model. This caching mechanism expedites future model queries to the server. Ultimately, the
proxy consistently maintains and exposes the latest models for a given program, facilitating informed decisions
regarding its adaptability to the Intelligent Controller.

Figure 3.2: Metric proxy HTML interface demonstrating live model generation and evaluation.

The practical use of this model in the ADMIRE infrastructure is foreseen to rely on the Mercury end-
point, which allows tight, low-latency coupling between the components. As illustrated in Figure 3.2, we
also implemented an HTML/JS interface to illustrate the data gathered by the metric proxy internally. On the
http://localhost:1337/model.html page, we present an output similar to the one of Extra-P. After
choosing a JOBID (past or currently running), the models are fetched using model/get. Then, when the user
chooses a model by clicking on it in the list, it will be plotted for the available points extracted from the profiles
(using profiles/points and model/plot). In addition, the user can evaluate the model at larger sizes
using the “Model Projection” slider. In this figure, the blue line represents the true measurements for the given
program, and the dashed line is the Extra-P model. Here, we see that despite matching the overall shape of the
curve, there are some outliers. In order to measure the quality of a model prior to using it, Extra-P provides an
RSS value that we leverage to measure how well the model fits the original points.

24

http://localhost:1337/model.html

CHAPTER 3. MODELLING I/O IN ADMIRE ADMIRE

3.3 Modelling I/O With Extra-P
To generate I/O performance models with Extra-P, profiles containing measurement points at different applica-
tion scales are required. As described in Chapter 2, the metric proxy is capable of delivering profiles at different
levels. In particular, we distinguish between high-level profiles like MPI function calls and low-level profiles
like those obtained from syscalls. For each Job, the metric proxy aggregates all functions in a single trace file
as described in Section 2.1. Next, a single profile file is generated from these traces as described in Section 2.2.
This file is provided to Extra-P to create the performance models. Consequently, as these profiles are rich with
I/O metrics, including the number of bytes read and written by the various I/O functions and at different levels,
Extra-P can easily model the application behaviour in this regard. In particular, I/O modelling capabilities can
be attained by providing the profiles in a particular file structure supported by Extra-P.

By default, Extra-P supports a variety of file formats like plain text, JSON, JSONL, Cube4 format, and
many more4. Since we intend to provide the data to Extra-P continuously, the JSONL file format was chosen,
as new data can be easily appended to the end of the file. In general, a single line in the JSONL format for
Extra-P has the following structure:

{ "params": { "<parameter1>": 0, "...": "..." }, "value": 0.0 }

To demonstrate how a typical JSONL profile generated with the metric proxy looks, consider the following
NEK5000 experiments executed on the HPC4AI cluster of the University of Turin [2,33]. NEK5000 represents
one of the applications handled in the ADMIRE project, and is thus a part of WP7. For our experiment, we
used a 60-node partition with Intel Broadwell processors and an Omnipath interconnect (100 Gb/s) on the Turin
cluster. We executed the NEK5000 turbPipe test case with checkpointing enabled for process configurations
ranging from 32 cores (1 node) up to 1404 cores (39 nodes) by using a step size of 32 cores. Consequently,
we obtained 39 different configurations. Next, the traces from the different configurations are gathered and
converted to a single JSONL file. As the number of processes is the only parameter for our example, the
JSONL file looks as follows:

1 {"params": {"Processes": 36}, "callpath": "strace_size..->scall->pread64", "metric": "Size (B)", "value": 1868271840.0}
2 {"params": {"Processes": 72}, "callpath": "strace_size..->scall->pread64", "metric": "Size (B)", "value": 1868340384.0}

.

.

.

.

.

.
38 {"params": {"Processes": 1368}, "callpath": "strace_size..->scall->pread64", "metric": "Size (B)", "value": 1870807968.0}
39 {"params": {"Processes": 1404}, "callpath": "strace_size..->scall->pread64", "metric": "Size (B)", "value": 1870876512.0}
40 {"params": {"Processes": 36}, "callpath": "strace_time..->scall->pread64", "metric": "Time (s)", "value": 1.069}
41 {"params": {"Processes": 72}, "callpath": "strace_time..->scall->pread64", "metric": "Time (s)", "value": 0.918}

.

.

.

.

.

.
77 {"params": {"Processes": 1368}, "callpath": "strace_time..->scall->pread64", "metric": "Time (s)", "value": 1.092}
78 {"params": {"Processes": 1404}, "callpath": "strace_time..->scall->pread64", "metric": "Time (s)", "value": 1.097}
79 {"params": {"Processes": 36}, "callpath": "strace_hits..->scall->pread64", "metric": "Hits", "value": 384.0}
80 {"params": {"Processes": 72}, "callpath": "strace_hits..->scall->pread64", "metric": "Hits", "value": 738.0}

.

.

.

.

.

.
116 {"params": {"Processes": 1368}, "callpath": "strace_hits..->scall->pread64", "metric": "Hits", "value": 12672.0}
117 {"params": {"Processes": 1404}, "callpath": "strace_hits..->scall->pread64", "metric": "Hits", "value": 12960.0}
118 {"params": {"Processes": 36}, "callpath": "strace_size..->scall->pwrite64", "metric": "Size (B)", "value": 303548544.0}

.

.

.

.

.

.
235 {"params": {"Processes": 1404}, "callpath": "strace_hits..->scall->pwrite64", "metric": "Hits", "value": 3000.0}

.

.

.

.

.

.
452 {"params": {"Processes": 144}, "callpath": "tau_size..->function->mpi_send", "metric": "Size (B)", "value": 9922929351.0}

.

.

.

.

.

.
9516 {"params": {"Processes": 1224}, "callpath": "tau_time..->function->mpi_send", "metric": "Time (s)", "value": 132.192}

Note that, for better readability, we limited the time metric to 3 digits after the decimal point, though it is up
to 19 digits. Moreover, we sorted the lines according to the number of processes and grouped similar function
calls. In the JSONL format, newly added data is appended to the end of the file, and thus, this sorting is most
likely more random. As observed, for the 39 different process configurations, 39 measurements are obtained for
each function call per metric, which are for this example bytes transferred, time, and function visits. Lines 1 to
39 present the measurement points for the pread64 calls traced for transferred (read) bytes. The following 39

4https://github.com/extra-p/extrap/blob/master/docs/file-formats.md

25

https://github.com/extra-p/extrap/blob/master/docs/file-formats.md

ADMIRE CHAPTER 3. MODELLING I/O IN ADMIRE

lines (i.e., from 40 to 78) present the profile in terms of time and the next 39 lines (from 79 to 117) in terms of
function visits (hits). Thus, 117 lines describe the measurement points over the different process configurations
for each function call traced. Line 118 continues with the next function profile obtained with strace, namely
pwrite64. The high-level function calls are listed after all measurement points obtained using strace are
handled. These profiles start with tau_* as indicated in the call path. Note again, that this sorting is only for
better readability, in reality, the functions are not sorted.

With this file at hand, the performance models for each of the traced functions can be generated by execut-
ing:

$> extrap-gui --json nek5000.jsonl

This opens the GUI of Extra-P and directly starts the performance model generating. As mentioned above,
three metrics can be selected for the experiment performed: the transferred bytes, the execution time, and
function visits. Figure 3.3 presents the performance models for the transferred bytes versus the number of
processes for selected syscall functions.

Figure 3.3: Extra-P models for selected syscall functions for NEK5000.

Based on the profiles gathered by the metric proxy, Extra-P models various I/O functions, including low-
level syscalls and high-level MPI (i.e., MPI-IO) functions.

While the extended modelling capabilities are great for examining individual I/O functions, a more sub-
stantial contribution for the ADMIRE project is to show the overall scaling behaviour of the different parts
(i.e., compute and I/O) of an application. Especially in the context of job scheduling, as explained later in Sec-
tion 4.1, knowing the scaling behaviour in terms of different resources is essential to balance the applications
on an HPC system.

As described in Section 3.1, by continuously passing data from the proxy (see Chapter 2), it is possible
to improve the models and thus refine them. As the collected monitoring data can be continuously appended
to the same file, the performance models are refined whenever more data is available. In particular, each new
measurement point usually improves the performance models of Extra-P. As such, the modelling capability
is now able to track application behaviour over time, with the possibility of applying a temporal filter over
the profiles used to model (for example, the last n profiles). This becomes relevant when the application is
changed, though this aspect would also be visible through the hashing key (see Section 3.2.3). Additionally, as

26

CHAPTER 3. MODELLING I/O IN ADMIRE ADMIRE

Extra-P offers metrics that provide quality control of the models generated (see Section 3.2.1), decisions about
the accuracy of the models can be made as well.

3.4 Examples
In the previous section, we demonstrated the extended modelling capabilities of Extra-P with NEK5000 as
an experiment. In this section, we provide further examples to demonstrate the gained performance insight
provided by Extra-P.

3.4.1 IMB-IO
To demonstrate the extended I/O modelling capabilities of Extra-P let us examine the scaling behaviour of the
IMB-IO benchmark from the Intel MPI benchmarks [8] executed on the Turin cluster [2, 33] with up to 576
processes. The experiment has been recently published in a blog post5. We executed the IMB-IO benchmark
with the default settings (except for the iteration flag set to 10). The benchmark suite usually repeats the
individual benchmarks6 (e.g., P_write_shared, S_read_indv, etc.) with a different number of processes, such
that the highest number is limited to the number of ranks specified. Thus, the unused processes wait at an MPI
barrier. For our analysis, we examined the benchmark with up to 576 processes (16 nodes).

To monitor the benchmark during its execution, we used the monitoring proxy. For the execution with 576
process, the Grafana dashboard, which shows the metrics stored in Prometheus, is shown in Figure 3.4.

Figure 3.4: Grafana dashboard showing in real time the execution of the IMB-IO benchmark on the Turin
cluster with 576 ranks.

After the traces are collected, a single file containing the profiles from all runs is generated. For this
example, the number of processes is the only parameter, and the metrics collected are transfer size, hits, and
time. Consequently, these metrics can be selected in the Extra-P GUI. Thus, instead of displaying absolute call
paths in Extra-P as traditionally done, we show the call path relative to the tools used to capture the information
(i.e, MPI-related information with tau, while strace is used to capture the syscalls). Figures 3.5 and 3.6 show
the performance models generated in Extra-P. While Figure 3.5 shows the scaling behaviour of the function
calls pwrite64 and MPI_File_write in terms of size (in bytes) versus the number of processes, Figure 3.6

5https://admire-eurohpc.eu/extrap-model/
6https://www.intel.com/content/www/us/en/docs/mpi-library/user-guide-benchmarks/2021-2/

imb-io-blocking-benchmarks.html

27

https://admire-eurohpc.eu/extrap-model/
https://www.intel.com/content/www/us/en/docs/mpi-library/user-guide-benchmarks/2021-2/imb-io-blocking-benchmarks.html
https://www.intel.com/content/www/us/en/docs/mpi-library/user-guide-benchmarks/2021-2/imb-io-blocking-benchmarks.html

ADMIRE CHAPTER 3. MODELLING I/O IN ADMIRE

shows the scaling behaviour of the execution time (in seconds) versus the number of ranks for low-level syscalls
as well as for high-level MPI calls.

Figure 3.5: Scaling behaviour of the function calls pwrite64 and MPI_File_write in terms of size (in
bytes) versus the number of processes.

Figure 3.6: Scaling behaviour of the execution time (in seconds) versus the number of ranks for low-level
syscalls and high-level MPI calls from the same setup.

Figure 3.7 presents the output of the metric proxy when leveraging the models from Extra-P for the same
example. It is shown that the proxy is capable of interpolating the values using the function provided. In
addition, the proxy invokes the modelling process each time a new point is added (when a job with the same
command finishes). As a consequence, the model is in constant evolution, being refined for each job. In this

28

CHAPTER 3. MODELLING I/O IN ADMIRE ADMIRE

Figure 3.7: model interpolation in the metric proxy of Pread_shared from the IMB benchmark.

case, we show the total time spent in MPI_File_read_shared, and it can be seen that the model is close to
the true measurement point (except for an outlier). Note that runs with the same size have their times averaged.

3.4.2 IO Skeleton Application
As a vehicle to measure the I/O performance at scale, we have developed a simple I/O benchmark exhibiting
various behaviours as functions of provided parameters. The goal of this benchmark is to synthesise payloads
mimicking the actual applications. In fact, in HPC, most applications are bulk-synchronous and often do I/O
at a regular pace, an observation which motivated, for example, the work on FTIO (see Section 3.5). The
parameters we have retained to build this simple proxy application are the following:

• IO burst size: size written at each burst;

• IO period: time between each burst

• IO itterations: number of iterations to be done

• R/W probability: the probability of transitioning from read to write (and conversely)

These configurations were gathered in a benchmark application called ioskel7. This application has the
peculiarity of configuring itself from the binary name. As such, as the proxy gathers commands by name

7https://github.com/besnardjb/ioskel

29

https://github.com/besnardjb/ioskel

ADMIRE CHAPTER 3. MODELLING I/O IN ADMIRE

(a) Write bandwidth. (b) Read bandwidth

Figure 3.8: Measurements traces shown by the proxy for ioskel.4.536870912.15.100 writing then
reading 512 MB every 4 seconds for 15 iterations.

to generate models, the various behaviours are correctly aggregated for a given configuration. Two naming
patterns are supported:

• ioskel.PERIOD.SIZE.ITER: a write-only benchmark, writing SIZE every PERIOD time for ITER iter-
ations;

• ioskel.PERIOD.SIZE.ITER.PROBA: a read/write benchmark with a PROBA probability of transition,
manipulating SIZE every PERIOD time for ITER iterations.

Thanks to this simple naming convention, it is possible to generate several configurations by simply creating
symbolic links to the same binary with various names accounting for a wide range of configurations. This has
the effect of creating a parametric analysis for the various I/O patterns. We used this benchmark to generate
models representing a wide range of behaviours, and this guided the modelling and malleability decision in the
ADMIRE project. In addition, each of these configurations is run at various scales to study the variation as a
function of the number of processes – the main parameter guiding malleability.

Figure 3.8 presents the traces of ioskel alternating between read and write. It can be seen that every 8
seconds, we have a spike of write bandwidth (see Figure 3.8a) in opposition to a phase with the read operations
(see 3.8b). In practice, we then have, per process, a 512MB burst in write followed by a burst in read for 15
iterations. This leads to a total write size of eight peaks of 512 MB, i.e., 4096 MB in total. Conversely, for the
read operations, we have 7 peaks of 512 MB and a total read size of 3584 MB.

As observed in Figure 3.9, we can see in the top part of the screenshots the following equations for total
written (Figure 3.9a) and read bytes (Figure 3.9b):

write = 1.714 ∗ 10−6 + 4294967862 ∗ size
read = −1.213 ∗ 10−5 + 3758116134 ∗ size

Both equations are affine functions, it shows that Extra-P did extract correctly the linear increase of the
write/read sizes as the number of processes increases. If we ignore the very small constant, Extra-P parame-
terised the operations as follows:

write =
4294967862.0

1024 ∗ 1024
read =

3758116134.0

1024 ∗ 1024
= 4096.000539MB per process = 3584.018835MB per process

30

CHAPTER 3. MODELLING I/O IN ADMIRE ADMIRE

(a) Extra-P model for write operations. (b) Extra-P model for read operations.

Figure 3.9: Extra-P models displayed by the metric proxy for the execution of the application
ioskel.4.536870912.15.100.

As outlined by the very small RSS (third column in the top table of Figure 3.9) for read and write bytes,
these values are spot on with the behaviour we expected through the empirical evaluation done for the traces
in the previous paragraphs. This shows that Extra-P is capable of detecting such patterns easily. These linear
equations are for Extra-P one of the simplest case. However, in terms of total size applications are often
“boring” as they tend to be symmetric in their use of I/Os, thus leading to such linear response in terms of total
sizes. One example of such a pattern is the program check-pointing its results every nth iteration, writing a
fixed amount of data over time.

3.4.3 Darshan Support
To provide even further support for profiles collected outside the project, an extension was developed that
parses several Darshan [14, 43] profiles and traces (DXT) into a single file that can be read by Extra-P. Conse-
quently, Extra-P can generate performance models that show how the I/O performance of an application scales
aside from the remaining phases (compute/communication). The essential advantage of this approach is that
it provides universal I/O model generation capabilities to Extra-P from existing profiles. As later discussed in
Section 3.5 and demonstrated in Section 3.5.7, FTIO also supports these traces, as this parsing represents the
back-end of FTIO.

In the scope of the IO-SEA8, HPC I/O traces were gathered from the I/O Trace Initiative website9 [30]
which has been an on-going collaboration between several EuroHPC projects led by JGU in the ADMIRE
and IO-SEA projects. We download all NEK5000 Darshan profiles from this website. Next, from the FTIO
repository10, we parsed the Darshan files into a single Extra-P supported profile:

$> ioparse *.darshan

Executing this command generates the file scale.jsonl in the current working directory, which has the fol-
lowing structure:

1 {"params":{"Processes":1024},"callpath":"read_sync->total_bytes","metric":"Bytes","value":1.177825e+08 }
2 {"params":{"Processes":2048},"callpath":"read_sync->total_bytes","metric":"Bytes","value":1.177988e+08 }
3 {"params":{"Processes":4096},"callpath":"read_sync->total_bytes","metric":"Bytes","value":1.178320e+08 }
4 {"params":{"Processes":8192},"callpath":"read_sync->total_bytes","metric":"Bytes","value":1.178996e+08 }
5 {"params":{"Processes":1024},"callpath":"read_sync->max_bytes_per_rank","metric":"Bytes","value":1.152250e+05 }
6 {"params":{"Processes":2048},"callpath":"read_sync->max_bytes_per_rank","metric":"Bytes","value":5.775300e+04 }
7 {"params":{"Processes":4096},"callpath":"read_sync->max_bytes_per_rank","metric":"Bytes","value":2.901800e+04 }
8 {"params":{"Processes":8192},"callpath":"read_sync->max_bytes_per_rank","metric":"Bytes","value":1.461800e+04 }
9 {"params":{"Processes":1024},"callpath":"read_sync->max_transfersize_over_ranks","metric":"Bytes","value":1.152250e+05}

.

.

.

.

.

.

8https://iosea-project.eu/
9https://hpcioanalysis.zdv.uni-mainz.de/

10https://github.com/tuda-parallel/FTIO

31

https://iosea-project.eu/
https://hpcioanalysis.zdv.uni-mainz.de/
https://github.com/tuda-parallel/FTIO

ADMIRE CHAPTER 3. MODELLING I/O IN ADMIRE

470 {"params":{"Processes":2048},"callpath":"io_time->async_read_t","metric":"Time","value":0.000000e+00 }
471 {"params":{"Processes":4096},"callpath":"io_time->async_read_t","metric":"Time","value":0.000000e+00 }
472 {"params":{"Processes":8192},"callpath":"io_time->async_read_t","metric":"Time","value":0.000000e+00 }

This file can be easily imported into Extra-P as it supports the structure mentioned in Section 3.3. To import
it directly into the GUI, we simply execute:

$> extrap-gui --json scale.jsonl

Figure 3.10: Extra-P models for the total time, the I/O time and the compute time.

As Darshan is widely used in the HPC community, by parsing the profiles we added the ability to generate
performance models easily through Extra-P. Aside from the number of hits and the total bytes transferred, we
can model the total time which can be divided in to the total I/O time and the total compute time (including
communication) as shown in Figure 3.10.

3.4.4 TMIO and Extra-P: Asynchronous I/O Requirements
As mentioned in Section 2.5, TMIO provides an offline (using the LD_PRELOAD mechanism) and an online
mode. To generate performance models with Extra-P, TMIO can be used in both modes, as the models are
generated post-run. In particular, the generated traces with TMIO for the different configurations can be merged
into a single profile similar to Section 3.4.3. Thus, it makes more sense to use the offline mode with Extra-P,
as there are currently no gained benefits in using the online mode. Thus, TMIO provides an easy-to-use tool
without any code modifications and minimal overhead.

One of the important metrics to model is the I/O bandwidth. While the approach handled so far can easily
achieve this (i.e., the bandwidth is among the gathered metrics, and consequently can be modelled), this be-
comes especially interesting for asynchronous I/O. TMIO was developed with a focus on asynchronous I/O.
As asynchronous I/O is usually done during (i.e., behind) the computational phases, TMIO finds the bandwidth
required to perform the I/O completely in the background of the compute phases. Consequently, if the system
provides this bandwidth to the application, the application would perform its asynchronous I/O entirely in the
background of the compute phases without wasting time at the matching blocking I/O calls like MPI_Test
and MPI_Wait or any of its derivatives. Note that the MPI standard demands matching pairs for asynchronous

32

CHAPTER 3. MODELLING I/O IN ADMIRE ADMIRE

Figure 3.11: Scaling behaviour of the required reading bandwidth BA versus the actual reading bandwidth TA.

I/O; a separate request complete call (MPI_Wait, MPI_Test, or any of their variants) is needed to complete
the I/O request [31, Ch. 14.2] and thus confirm that the data has been read or written.

To demonstrate this aspect, we modified the HACC-IO [28] benchmark to perform asynchronous I/O.
HACC-IO mimics an I/O phase of HACC (Hybrid/Hardware Accelerated Cosmology Code) [21]. From an
abstract view, HACC-IO fills arrays of different types with the current index of a for loop, which iterates
over the number of particles. Next, a header (containing metadata information) and the arrays are written to
a file. Finally, the file’s contents are read again and compared against the values of the variables which are
still in memory. We classified the application into four blocks in the same order as described above: com-
pute, write, read, and verify. For our purposes, we added a for loop around these blocks to execute them
several times. Moreover, we used the MPI-IO version of HACC-IO to write using an individual file pointer
to distinct files. In the standard version, HACC-IO uses non-collective blocking I/O routines with explicit off-
set (MPI_File_write_at and MPI_File_read_at), which we replaced with matching non-collective
non-blocking I/O routines (MPI_File_iwrite_at and MPI_File_iread_at). Moreover, we adjusted
the code such that the read/write occurs asynchronously with the compute/verify blocks. To avoid data races
between the read and write blocks, we used wait blocks (MPI_Wait) at the end of the compute and verify
blocks. Additionally, to make the data from one compute block available to the verify block of the same phase,
we create a copy of the data using memcpy just before the wait block. Finally, we added global broadcast
operations during the compute and verify phases, to add more variability to these phases.

With TMIO preloaded, we executed HACC-IO with 10 loops and 106 particles per rank on the Lichtenberg
cluster with a varying rank configuration. Figure 3.11 shows the scaling behaviour of the actual bandwidth
(denoted as T) versus the required (bandwidth denoted as B). The index "A" stands for the average. Thus,
during the execution of the application, TMIO gathered both the required and the actual bandwidth at the rank
level. Next, the rank-level metrics were aggregated to obtain the application-level metrics. TMIO can either
perform this during MPI_Finalize, or this is handled by the parsing script that merges the different traces
into a single profile for Extra-P. For this example, the latter option was the case to decrease the overhead of
TMIO on the application. Consequently, the metrics shown in Figure 3.11 represent application-level values.
As observed, as the required reading bandwidth is higher than the actual one, the application is blocked during
the asynchronous reading.

Figure 3.12 shows the scaling behaviour of the application versus the number of processes. The top part of
Figure 3.12 shows the total compute and I/O time. As observed, the I/O time increases much slower compared
to the compute time with an increasing number of ranks. The bottom part shows that with an increasing number
of ranks, the application increasingly spends more time waiting for the asynchronous read to finish. This
is because the verify plus the memcpy blocks consume more time than the compute block. Thus, the writing
phase has a longer duration enabling the application to hide it completely behind the verify and memcpy blocks.

33

ADMIRE CHAPTER 3. MODELLING I/O IN ADMIRE

Figure 3.12: Scaling behaviour of the application time versus the number of MPI ranks. The top part shows the
total compute and I/O time, while the bottom part shows the time spent by the application waiting (i.e., lost)
for the asynchronous read (tar) and write (taw) to finish.

In contrast, the compute block is very short, forcing the read phase to be visible by blocking the application till
its completion.

3.5 FTIO
As the behaviour of an application can vary during execution, it can be beneficial to generate models that
describe the current behaviour rather than to have post-execution performance models or complicated model
descriptions. In particular, while performance models describe the whole scaling behaviour of an application,
knowing when the different phases of an application occur can be very beneficial, for example, for contention
avoidance algorithms like I/O scheduling [10, 16, 19, 52] and burst buffer management [3, 4]. This is where
FTIO comes in, as described in this section. An overview of FTIO is provided in Figure 3.13.

We start by explaining the difficulty of identifying I/O phases in Section 3.5.1. In Section 3.5.2, we describe
the importance of the period of the I/O phases. FTIO treats the I/O bandwidth over time as a signal. Afterwards,
the signal is discretised and then analysed using the discrete Fourier transform as explained in Section 3.5.3.
To find the period of the I/O phase, we use outlier detection methods as described in Section 3.5.4. We provide
metrics that gauge the confidence in the results in Section 3.5.5. Finally, we explain how to predict the period
of the I/O phases of an application at runtime using FTIO in Section 3.5.6.

34

CHAPTER 3. MODELLING I/O IN ADMIRE ADMIRE

Figure 3.13: Overview of FTIO. FTIO requires a trace file containing the bandwidth as an input and provides
the frequency and its confidence as an output. Further metrics that build on these results are also provided.

3.5.1 The Challenge of Finding I/O Phases
In HPC, large scientific applications often alternate between I/O and compute phases [15]. Periodic behaviours
often describe the I/O phases due to repeated actions like checkpointing [20]. On the other hand, due to the
nature of I/O being a shared resource on HPC systems, long file system access, I/O congestion, as well as I/O
bursts are often encountered. While several research works have been dedicated to reducing these problems
by providing, for example, burst buffers to flatten the I/O [48] or I/O scheduling [11, 17], they still require
information about the I/O behaviour, which is often not easy to acquire. This is also the case in the ADMIRE
project, where designing an active I/O stack requires quick responses, which by predicting the I/O behaviour,
can be made.

Several tools have been devoted to aggregating I/O metrics (.e.g., Darshan). However, aggregated metrics
do not properly represent the temporal behaviour of applications [51]. Since I/O tends to be bursty and periodic,
knowing how many bytes are accessed does not paint the whole picture. We need to know when (or rather how
often) these accesses happen: two applications that write each 1 TB over 2 hours, one with a single I/O phase at
the end of the execution and the other one with multiple I/O phases every 2 minutes, impose very different loads
on the system. This has motivated us, as mentioned in Chapter 2, to extend our monitoring tool (metric proxy)
and develop another one that solely focuses on this aspect (TMIO) to be as lightweight and fast as possible.

Finding the I/O phase and, in particular, the period of these phases can be a challenging task in the time
domain. The HPC I/O stack only sees a stream of issued requests and does not provide I/O behaviour charac-
terisation. Thus, the notion of an I/O phase is often purely logical, as it may consist of a set of independent I/O
requests issued by one or more processes and threads during a particular time window, and popular APIs do not
require that applications explicitly group them. Consequently, a major challenge is to draw the borders of an
I/O phase.

If we consider, for example, an application with 10 processes that write 10 GB by generating a sequence of
two 512 MB write requests per process, then performs computation and communication for a certain amount
of time, after which it writes again 10 GB. How do we assert that the first 20 requests correspond to the first
I/O phase and the last 20 to a second one? An intuitive approach is to compare the time between consecutive
requests with a given threshold to determine whether they belong to the same phase. Naturally, the suitable
threshold should depend on the system. The reading or writing method can make this an even more complex
challenge, as accesses can occur, e.g., during computational phases in the absence of barriers. Hence, the
threshold would not only be system dependent but also application dependent, making this intuitive approach
more complicated than initially expected. Consequently, there is a need for a tool that first correctly identifies
the I/O phase without using such thresholds and then predicts their future occurrences.

35

ADMIRE CHAPTER 3. MODELLING I/O IN ADMIRE

3.5.2 Temporal I/O Behaviour
Often one might desire a detailed description of I/O activity over time. However, finding an extremely precise
profile comes at the cost of a higher overhead, both in terms of measurement and data accumulation. Moreover,
a detailed time model can be hard to explore a contention-avoidance algorithm that is lightweight enough to
be used in practice, especially as models with high predictive accuracy are often black box and cannot be
interpreted directly for explaining I/O performance [24]. Hence, depending on the use case, models at higher
abstraction levels might be tolerated, which can be easier to interpret and often to generate, especially online.

Recent work on I/O scheduling [10, 16, 25] has shown that knowledge of periodic I/O patterns, even when
not perfectly precise, leads to good contention avoidance. Consequently, one approach could be to predict the
period of the I/O phases during runtime and provide this information to such approaches rather than finding
detailed time models. This is where our newly developed tool FTIO [46] comes in, which is publicly available
on GitHub: https://github.com/tuda-parallel/FTIO.

With FTIO, we focus on predicting the I/O phases rather than the I/O requests. As the name suggests,
FTIO characterises the behaviour of an HPC application using well-known frequency techniques from signal
processing. In particular, rather than examining the behaviour of an application in the time domain, FTIO
examines its behaviour in the frequency domain. Thus, we move away from detailed modelling and focus on a
simple metric: The period of the I/O phases. Consequently, the provided metric presents a trade-off between
aggregated information and a detailed time model.

All that FTIO requires is the application bandwidth over time, which we denote as x(t). If rank-level
metrics are provided to FTIO, the tool internally calculates the application-level bandwidth by overlapping the
rank-level metrics. Different tools exist that can provide this metric. TMIO and the metric proxy are examples
of these. Darshan and recorder traces are also supported. However, for the online version of FTIO, only TMIO
and the metric proxy are currently suitable, as later explained in Section 3.5.6.

Since we focus on I/O phases, by applying DFT on the application-level signal, we overcome the challenges
mentioned in Section 3.5.2. Compared to time analysis, frequency techniques, such as DFT, decompose a signal
into its frequency components, giving us control over the relevant I/O. That is, through the parameters of the
DFT, we can control the granularity of the captured behaviour, as will be described in the next section.

3.5.3 Discrete Fourier Transformation
Fourier analysis has a wide range of applications, including signal and image processing, analog signal design,
physics (optics, astronomy, etc.), and many more. In essence, it decomposes a signal into its frequency com-
ponents such that their sum allows for reconstructing the signal. While the term ”Fourier transform” usually
refers to the continuous one, which deals with continuous signals, the discrete Fourier transform DFT works
with discrete samples of the signal in the time domain. Here, we use the latter one and discuss how we apply it
and profit from its unique properties.

FTIO treats the bandwidth over time x(t) as a continuous signal. As a first step, FTIO performs the discrete
Fourier transformation on x(t). Thus FTIO first needs to discretise the continuous signal by sampling it with a
s constant sampling rate Ts in a time window ∆t, to obtain N = ∆t · fs samples:

{xn = x(n/fs) | n ∈ [0, N)} (3.1)

The evenly spaced sequence xn is then transformed from the time domain into a sequence Xk of the same size
in the frequency domain:

Xk =

N−1∑
n=0

xne
−2πkn

N
i (3.2)

Where the bins k ∈ [0, N) correspond to the frequencies: fk = k
N fs = k

∆t . Following the terminology of
signal analysis, we refer to Xk=0 as the DC offset (or DC value), fk=1 the fundamental frequency of DFT, and
fk>1 its harmonics.

Since the I/O signals is always real, xn consists of purely real values, and thus for k ∈ [1, N):

Xk = X∗
(N−k),

36

https://github.com/tuda-parallel/FTIO

CHAPTER 3. MODELLING I/O IN ADMIRE ADMIRE

such that X∗
k denotes the complex conjugated of Xk. Thus, the signal is fully contained with the first 1 + N

2

values of Xk (k ∈ {0, · · · , N/2}). Moreover, the highest captured frequency for the analysis is fs
2 , which

directly shows the well-known Nyquist theorem.
Consequently, when plotting the amplitude Xk against the frequencies fk (i.e., in the frequency domain),

only half of the spectrum (single sided spectrum) needs to be inspected. In this case, the amplitude of symmetric
signals (around N

2) needs to be multiplied by two. Thus, only half of the frequencies are needed to reconstruct
the original signal with the inverse DFT (IDFT):

xn =
1

N

X0 +

N
2∑

k=1

2|Xk| cos
(
2πkn

N
+ arg(Xk)

) (3.3)

with the amplitude |Xk| and the phase arg(Xk).

|Xk| =
√
Re(Xk)2 + Im(Xk)2

arg(Xk) = atan2(Im(Xk),Re(Xk))

This reduces the calculation needed for the reconstruction of the signal and limits the constituting signals to
cosine waves only, simplifying the interpretation of results. Moreover, the DC offset X0 is expected to be
among the highest components as the I/O data transferred is always a positive number of bytes, and the cosine
waves obtained with DFT must be shifted upwards.

As I/O exhibits high variability and is often affected by noise, a more robust approach is to replace the
frequency (i.e., amplitude) spectrum with the power spectrum:

pk =
1

N
X2

k

Thus, by taking the square of the amplitude, frequency components with higher contributions can be easily
spotted. To find the dominant frequency fd that describes the frequency of the I/O phases, a simple approach
would be to find the component with the highest contribution while excluding the DC offset from the analysis.
The corresponding frequency of this component is then simply fd. However, this is not enough, as there might
be frequency candidates with similar high contributions, which is often the case for non-periodic signals. Thus,
fd must not only have the highest contribution, but it must also be an outlier. This is explored next.

3.5.4 Outlier Detection
FTIO offers different outlier detection methods, including the Z-score [26], DBSCAN, isolation forest, local
outlier factor, and the find_peaks algorithm from SciPy. By default, FTIO favours easier calculation and thus
uses the Z-score, which reveals how many standard deviations σ a power pk is from the mean p̄ of all powers:

zk =
|pk| − |p̄|

σ
(3.4)

A Z-score above three is usually a direct indication of an outlier. However, for our purpose, just finding an
outlier is not representative enough to find the dominant frequency; it must be at the same, dominating the
behaviour of the signal. That is, it must be distinct from the remaining outliers. For that, we introduce a
tolerance value of 80% (that can be modified) multiplied by the maximum power. Consequently, dominant
frequency candidates satisfy the following equation:

Df = {fk|zk ≥ 3 and zk/zmax ≥ 0.8} (3.5)

Depending on the number of dominant frequency candidates Df , we distinguish between three cases: If
only a single frequency fk satisfies Eq. (3.5), the corresponding frequency is the dominant frequency fd, and
we have a high confidence ck in the obtained results. If two frequencies satisfy Eq. (3.5), i.e., Df = {fk1 , fk2}
(two candidate frequencies), the one with the higher power is the dominant frequency. Moreover, the signal

37

ADMIRE CHAPTER 3. MODELLING I/O IN ADMIRE

has some variation in its behaviour but is still periodic, and we thus have a moderate confidence ck in the
results. Finally, if more than two frequencies satisfy the equation, the signal is most likely not periodic. There
is an exception when the candidates are multiples of two of each other. In this case, the higher frequencies are
ignored. The presence of this kind of harmonics with decreasing high contributions is an indication that there
are periodic I/O bursts in the signal as will be demonstrated in Section 3.5.7. Note that we only described the
approach briefly, as several more steps are involved in the calculation of ck and extraction of fd. The detailed
approach has been described in [46].

3.5.5 Confidence Metrics
The gauge the results from FTIO, we provide confidence metrics. That is, as long as Eq. (3.5) returns only
two dominant frequency candidates, we provide the ck in fk. Let us denote I1 = {i | zi ≥ 3} as the set of
frequencies that are outliers, and I2 = {i | zi/zmax ≥ 0.8} as the set of frequencies whose Z-score is within
80% of the maximum Z-score, then the confidence ck of the frequency fk is:

ck =
1

2

(
zk∑
i∈I1 zi

+
zk∑
i∈I2 zi

)

Thus, cd is the confidence of the dominant frequency fd. To further refine the confidence metric, we optionally
provide a second method that does not rely on the result from DFT, namely autocorrelation. The results from
both analyses are merged in the final step of FTIO. However, we skip this explanation, as it has been described in
detail in [46]. To sum up, an overview of FTIO’s algorithm (Sections 3.5.3 to 3.5.5) is provided in Figure 3.14.

Figure 3.14: Internal FTIO architecture. The dashed lines indicate optional steps. FTIO internally calculates
application-level bandwidth. Afterwards, the dominant frequency is found using DFT and outlier detection. If
autocorrelation is additionally used, the results are merged with the results from DFT to refine the confidence.

38

CHAPTER 3. MODELLING I/O IN ADMIRE ADMIRE

3.5.6 Online Approach: Predicting the Frequency of the I/O Phases at Runtime

FTIO can be executed offline (detection) and online (prediction) period analysis. In the offline mode, FTIO
reads post-simulation profiles or traces to detect the period of the I/O phases. Various existing tools, including
Recorder [49], Darshan [14,43], as well as newly developed tools like TMIO (Section 2.5) and the metric proxy
(Section 2.1) are supported. In particular, the online mode of TMIO was developed for this purpose. Since
D5.3, the metric proxy has been extended to yield profiles with a high sampling rate for FTIO as described in
Section 2.1. Consequently, two tools can provide x(t) to FTIO to obtain predictions regarding the period of the
I/O phases during an application’s runtime.

For the online mode, FTIO monitors a tracing file as shown in Figure 3.15. Whenever this tracing file
is modified (e.g., TMIO appends new traces), FTIO launches a new child process that predicts the period of
the I/O phases. Once the processes perform the prediction, the results are merged into a shared memory space

Figure 3.15: Online approach of FTIO. A file is monitored for changes with FTIO. Whenever new traces are
appended to the file (e.g., through TMIO in the online mode), a new prediction is executed in a new process.

between them. Consequently, based on the predictions collected so far, the results are evaluated, and the periods
are optionally provided in probability intervals. This represents the first step we took to tackle the problem of
changing I/O behaviour and variability. Another optional enhancement is to disregard old results at some point
and consider a shorter time window for the analysis. Using online time window adaptation, FTIO can, for
example, after finding k times a dominant frequency, reduce the time window for evaluation to k times the last
found period. Alternatively, one could specify a fixed length or a fixed k. Another enhancement is to provide
frequency ranges for the prediction alongside their probability.

We demonstrate the applicability of the online approach of FTIO with an I/O scheduling use case in Sec-
tion 4.3. This experiment uses the IO-Sets [11] implementation from WP4. In particular, further information
about this experiment can be found in [6] and about FTIO in [46]. Furthermore, the data set [47] is also online
for the reproducibility of the results.

3.5.7 Examples
In the following, we demonstrate FTIO based on two examples: IOR and NEK5000. The first example demon-
strates the applicability of the tool to a large application. Moreover, we show that FTIO allows us to detect I/O
bursts in the signal. The second example shows the compatibility of FTIO with profiling and monitoring tools
outside the scope of ADMIRE to reach a broader audience.

39

ADMIRE CHAPTER 3. MODELLING I/O IN ADMIRE

Example 1: IOR FTIO cannot only find the dominant frequency (if any) in a signal, but it can also detect
I/O bursts. To demonstrate this, we executed the IOR benchmark [7] on the Lichtenberg cluster with 7680
ranks. We set up IOR with 8 iterations, 2 segments, a transfer size of 2 MB, and a block size of 10 MB with the
MPI-IO API in the parallel mode and TMIO preloaded. After execution, FTIO on the result for the entire time
window ∆t = 563.11 s (i.e., from 65.17 s to 628.27 s) with a sampling frequency fs = 10 Hz (default). Thus,
we executed the following call:

$> ftio 7680.jsonl -re -v -e mat

FTIO then performs DFT followed by the Z-score. For this example, FTIO found a dominant frequency at
fd = 1.24 ∗ 10−02 Hz, corresponding to a period of Td = 80.442 s. Moreover, FTIO provides a confidence of
ck = 62.05% in the results. The normalised power spectrum is shown in Figure 3.16.

Figure 3.16: normalised single-sided power spectrum obtained from FTIO on IOR with 7680 ranks. The red
bar at 1.2∗10−02 Hz has the highest contribution and represents the dominant frequency in the signal. The next
highest contribution is from the frequency at 2.49 ∗ 10−2 Hz coloured in purple.

As observed in Figure 3.16, the frequency at 1.2 ∗ 10−02 Hz has the highest contribution to the power.
Consequently, with Z-score as the default method, this frequency was detected as an outlier, as shown in
Figure 3.17.

Figure 3.17: Result of the Z-score on IOR with 7680 ranks. As indicated by the red "x" marker, FTIO just
detected a single frequency is an outlier with a high confidence. This outlier has, at the same time, the highest
contribution (see Figure 3.16). The red colour in this figure indicates that the outlier has also a moderate
confidence.

Rather than displaying the plots with Plotly, FTIO allows selecting also Matplotlib as a plot engine. This
brings the advantage that the plots are fast generated in case a lot of sample points need to be displayed. For
this, we execute FTIO with the -e mat flag. The original signal x(t), the discretized signal xn, and the cosine
wave of the dominant frequency are observed in Figure 3.18. Note that, as observed in Eq. (3.3), the dominant

40

CHAPTER 3. MODELLING I/O IN ADMIRE ADMIRE

frequency (i.e., the cosine wave) just represents one of the frequencies needed to reconstruct the signal using
the IDFT. Consequently, the more frequencies are used, the more accurate the reconstructed signal becomes as
we later see in this example.

Figure 3.18: Temporal behaviour of IOR with 7680 ranks execute don the Lichtenberg cluster. The cosine wave
containing the dominant frequency is shown in green. As observed, the I/O phases align with the drawn cosine
wave.

As mentioned in Section 3.5.3, FTIO excludes the DC offset from the analysis. Consequently, as shown in
Figures 3.16 and 3.17, the second highest frequency (while ignoring the DC offset) is at 2.49 ∗ 10−2 Hz. How-
ever, this frequency is a harmonic (multiple of two) of the dominant frequency fd = 1.243 ∗ 10−2. According
to Section 3.5.4, such frequencies indicate that the signal contains I/O bursts. To demonstrate this aspect, FTIO
offers a flag that allows plotting up to the top 10 frequencies presented in the signal x(t). For this, we pass the
-re flag:

$> ftio 7680.jsonl -re -e mat

This plots the reconstructed signal using the IDFT up to the number of specified frequencies. In Figure 3.19,
we plotted the reconstructed signal with up to 10 frequencies. The top part of the figure shows the reconstructed
signal from the frequency fd = 1.24 ∗ 10−2 Hz plus the DC offset. The second figure from the top, which is
denoted with "Recon. top 3", shows the reconstructed signal the same as previously plus the contribution of
the frequency at 2.49 ∗ 10−2 Hz and so on. As observed, the more frequencies are included, the closer the
reconstructed signal becomes to the original one. Moreover, the highest contributing frequencies are almost all
harmonics of fd = 1.24 ∗ 10−2 Hz, indicating that this constitution allows detecting I/O bursts in the signal.
This aspect will be further explored in the future.

Example 2: NEK5000 In the second example, we want to highlight the compatibility of FTIO with other
tools that provide I/O traces. As mentioned, and like TMIO, FTIO offers online (prediction) and offline (de-
tection) modes. These methods depend on whether the application is traced online or offline traces are used.
Moreover, similar to Extra-P, to reach a broader audience, FTIO offline mode supports Darshan traces as men-
tioned in Section 3.4.3. From the I/O Trace Initiative website [30]11, we download the Darshan file12 (renamed
to 1024.darshan) of NEK5000 which was executed on the MOGON II cluster with 1024 ranks. Next, we pass
this file to FTIO via:

$> ftio 1024.darshan

11https://hpcioanalysis.zdv.uni-mainz.de/
12https://hpcioanalysis.zdv.uni-mainz.de/trace/64ec79b34d5c25a42acabc94

41

https://hpcioanalysis.zdv.uni-mainz.de/
https://hpcioanalysis.zdv.uni-mainz.de/trace/64ec79b34d5c25a42acabc94

ADMIRE CHAPTER 3. MODELLING I/O IN ADMIRE

Figure 3.19: Temporal behaviour of IOR with 7680 ranks drawn alongside the reconstructed signal with a
varying number of frequencies.

42

CHAPTER 3. MODELLING I/O IN ADMIRE ADMIRE

This executes FTIO with the default outlier detection method (Z-score). FTIO discretized the signal of
length 86016.0 s with a sampling frequency fs of 6.1 ∗ 10−3 Hz. As the trace file provides bins, FTIO automat-
ically adjusted the sampling frequency fs to the needed value. Consequently, N = 525 samples were collected
in 0.006 s. Next, DFT is executed. The single-sided power spectrum is shown in Figure 3.20.

Figure 3.20: Single-sided normalised power spectrum obtained using FTIO on NEK5000 with 1024 ranks. In
this figure, we additionally show the DC offset at 0 Hz.

As observed in Figure 3.20, the frequency at nearly 0.0001 Hz has the highest contribution compared to
the remaining ones. In fact, FTIO spotted 4 frequencies with a Z-score higher than 3. From these frequencies,
only a single one satisfies Eq. (3.5) and is consequently the dominant frequency. Moreover, FTIO provides a
confidence of 72.96% in the found value. In Figure 3.21, the time behaviour of the signal as well as the result
from FTIO are illustrated. FTIO found the dominant frequency at fd = 1.05 ∗ 10−4, which is plotted in green
in this figure.

Figure 3.21: Result of FTIO on the Darshan profile of NEK5000 with 1024 ranks. The figure shows the
dominant frequency fd = 1.05 ∗ 10−4 (green cosine wave) drawn along the original and discrete signal.

Figure 3.22 shows the top three frequencies in the signal. As illustrated, the time behaviour of the signal
changes, especially near the end. In particular, much more data is written at the end, which disturbs the periodic
behaviour. Consequently, the obtained low confidence value is justified.

To adapt to changing behaviour, FTIO offers modifying the inspected time window ∆t of the analysis. In
the online mode, this is performed automatically. For offline evaluation, the user can control the time window
by specifying the start time -ts start_time and/or the end time -te end_time of the analysis. We
plan on developing more automated methods for the offline approach in the future.

Rather than executing the above command, with the -o flag, we can specify that we would use DBSCAN

43

ADMIRE CHAPTER 3. MODELLING I/O IN ADMIRE

Figure 3.22: Result of FTIO on the Darshan profile of NEK5000 with 1024 ranks. The figure shows the top
three frequencies (including the DC offset) in the signal.

to detect the outliers instead of using the Z-score. Moreover, we can adjust the tolerance value, which is by
default 0.8 in Eq. (3.5), using the -t flag:

$> ftio 1024.darshan -o dbscan -t 0.6 -v

As shown in Figure 3.23, similar results are obtained. DBSCAN results in a single cluster (cluster 1). The
dominant frequency at fd = 1.05 ∗ 10−4 coloured in red in the figure is the only outlier detected. Thus, the
results are similar to the case when the Z-score was used.

To refine the confidence, FTIO offers to use additional autocorrelation. However, we skip this step here,
as this is later demonstrated in Section 4.4. Moreover, the signal can be further characterised based on the
frequency found. This includes providing a periodicity score and calculating the average bytes transferred.
More details on these aspects are provided in [46].

Figure 3.23: Result of FTIO on the same trace as in Figures 3.20 and 3.21, however, using DBSCAN rather
than the Z-score for outlier detection. As observed, similar results are obtained.

44

CHAPTER 3. MODELLING I/O IN ADMIRE ADMIRE

3.5.8 FTIO Meets Extra-P
FTIO creates prediction for the I/O phases of an application. More generally speaking, FTIO can generate
predictions for any traces provided. While we limited this aspect to I/O phases, other options include predicting,
for example, the scheduling points, compute phases, and other metrics according to captured information in the
traces.

With malleability, predicting the I/O phases can be very beneficial. This becomes even more relevant when
the scaling behaviour of the application is examined. Consequently, we recently investigated combining FTIO
and Extra-P. While FTIO generates predictions for the phases, Extra-P could model their scaling behaviour.

To demonstrate this aspect, we download from the I/O Trace Initiative website [30]13 all currently presented
NEK5000 darshan files (from 1024 till 8192 ranks). Next, we executed FTIO on each of them. We merged
the found predictions into a JSONL file as described in Section 3.3, which is supported by Extra-P. Finally, we
provided the generated file to Extra-P and obtained results presented in Figure 3.24.

Figure 3.24: Scaling behaviour of the prediction (frequency of the I/O phases) from FTIO in Extra-P for
NEK5000.

For this example, each trace file just delivered a single prediction as the offline version of FTIO was used.
Future work will focus on integrating the online approach of FTIO with Extra-P to provide Extra-P with more
predictions.

13https://hpcioanalysis.zdv.uni-mainz.de/

45

https://hpcioanalysis.zdv.uni-mainz.de/

ADMIRE CHAPTER 4. USE CASES: EXPLOITING THE MODELS

4 Use Cases: Exploiting the Models

The models developed in WP5 can aid different components in the ADMIRE framework in their decision-
making. In this chapter, we demonstrate the use cases of these models highlighting in each case the advantages
gained through our approach. In particular, we focus on four components: The malleability manager from
WP3, the inelegant controller from WP6, the I/O scheduler from WP4, and the ad-hoc file systems from WP2.
In the same order, the synergy between these models and the components is handled in Sections 4.1 to 4.4.

4.1 Job Scheduling
In WP3, we developed a scheduling algorithm to balance the computational and I/O load of the workload. As
the algorithm’s baseline, we define the I/O intensity of a job, the system (i.e., running jobs), and the workload
(i.e., running and queued jobs). To assess the I/O intensity of a job, we combine the job metrics I/O time, total
time, and the average bandwidth achieved to the PFS. We then derive the system and workload I/O intensity by
combining the intensities of the running and queued jobs, respectively, and with every scheduling decision, the
scheduler approximates the workload I/O intensity with the system I/O intensity.

Extra-P models provide the algorithm with all the necessary metrics in the decision-making process. The
scheduler retrieves the scalability for jobs entering the queue and alters the workload I/O intensity accordingly.
As we consider rigid, moldable, and malleable jobs, the scheduler has to account for single or multiple configu-
rations, depending on the job type. While rigid jobs alter the workload I/O intensity with a single configuration,
the scheduler considers the preferred configuration for moldable and malleable jobs upon submission. When
a job enters the system (i.e., starts executing), the system I/O intensity alters accordingly. In the case of mal-
leable jobs, the scheduler exploits scheduling points to approximate the workload I/O intensity by changing the
configuration of a job, which, in return, modifies the system I/O intensity. Figure 4.1 visualises our scheduling
concept.

admit
job

query
models

update

query job
information

update

Scheduler

Extra-P
models

System

Job queue

Workload
I/O intensity

System
I/O intensity

Figure 4.1: Our scheduling concept balancing computation vs. I/O exploiting Extra-P models.

4.1.1 A malleability scheduling algorithm
In ADMIRE, we have developed a new scheduling algorithm, named the Malleable Easy Backfilling (MEBF)
algorithm, which extends Easy backfilling with malleability features. When a job arrives to the system, the jobs
are allocated to resources normally or adapted to the availability of the system’s resources.

Following performance models, such as those provided by Extra-P, malleability decisions are applied to the
jobs based on their priority and their remaining execution time. MEBF scheduling algorithm first tries to serve

46

CHAPTER 4. USE CASES: EXPLOITING THE MODELS ADMIRE

Algorithm 1: Malleable job expansion with Backfilling, MEBF
Input: List of jobs: J ; set of nodes: N ;
// workload lists updated each schedule jobs← {j ∈ J : statej = RUNNING ∧ typej = MALLEABLE};
free_nodes← {n ∈ N : staten = FREE};
for each job, job ∈sorted_jobs do

if job.state == PENDING then
for i ∈ pref_nodes, . . . ,min_nodes do

if i ≤ free_nodes then
job.assign(i)
break

end
end
if free_nodes == 0 & low_r ̸= 0 then

SHRINK(low_r)
else

if free_nodes ̸= 0 & rmjobs ̸= 0 then
backfilled_job =BACKFILL(pending_jobs)
if backfilled_job == ”None” then

EXPAND(high_r)
else

backfilled_job.assign(pref_nodes)
end

else
if (no pending_jobs) then

EXPAND(high_r)
end

end
end

end
end

each submitted job according to its priority, giving the higher-priority jobs a chance to be executed before the
lower-priority jobs. If an arriving job can’t be allocated because of insufficient available resources, the system
state is checked to go either with backfilling, expansion, or shrinking. If the system state indicates that there
are free resources but not enough for the queued job, BACKFILLING is invoked to find another malleable job
that can be allocated with its preferred number of nodes. If BACKFILLING does not find a suitable job to fill the
resources, EXPANSION of the longest-running job can be checked. On another hand, if the state of the system
indicates that there are no free resources at all, a list of candidates jobs based on their priority is created to make
space for the submitted job through SHRINK. The scheduling algorithm is detailed in Listing 1.

Shrinking a job is implemented only after it is confirmed that job performance is not harmed. For each
candidate job, the feasibility routine is invoked. It uses a termination time prediction based on the recorded
execution time to decide the possibility of shrinking. The feasibility routine executes a comparison between the
job execution time with malleability and the job performance without implementing any changes. Only if the
job will not be terminated soon or if the ratio between the predicted execution time with shrinking and the static
execution time does not exceed a certain threshold (γ), the shrinking can be implemented. As defined in the
equations 4.1 and 4.2. Once the job shrinking is considered feasible, a shrinking_factor specifies the amount of
granted nodes. It is important to re-mention that node stealing is performed only from low-priority jobs.

The job expansion as well is carried out after checking the feasibility. The predicted remaining execution
time should be greater than a quarter of the recorded execution time of the job. Otherwise, the job is considered
almost complete, and the expansion will not provide the desired benefits. In both malleable events; shrinking
and expansion, the de-allocation cost or allocation cost (α) of the nodes was taken into account. After removing
or adding new nodes from or to a job, it is appended to the reconfigured jobs list to avoid applying changes on
the same jobs several times.

granted_nodes = job_assigned_nodes× sharing_factor (4.1)

47

ADMIRE CHAPTER 4. USE CASES: EXPLOITING THE MODELS

Algorithm 2: Malleability Hand-off policy for expansion
Input: List of jobs: J ; set of nodes: N ;
rmjobs← {j ∈ J : statej = RUNNING ∧ typej = MALLEABLE};
free_nodes← {n ∈ N : staten = FREE};
sorted_jobs← SORT(rmjobs, "SCAL_FACTOR");
for j in sorted_jobs do

if FEASIBLITY_EXPAND(j) then
for (n ≤ |free_nodes| − |Jassigned_nodes|,−1) do

nodes_new ← n+ |Jassigned_nodes|;
if (n > assigned_nodes)and(nodes_new ≤ |free_nodes| ∧ nodes_new ≤
|j.max_nodes|) then

j.ASSIGN(n);
FREE_NODES.REMOVE(n);
BREAK;

end
end

end
end

where job_assigned_nodes is the number of nodes currently used by a job during execution. and sharing_-
factor defines the shrinkage step (i.e., shrink amount)

shrink_increase =
granted_nodes

job_assigned_nodes
× rem_exe_time+ α (4.2)

where rem_exe_time is the estimated remaining time of a job until it is completed. We used the recorded
execution times of the jobs on a dedicated system to calculate the estimated time. While alpha represents the
cost of deallocation.

new_est_exe = rem_exe_time+ shrink_increase (4.3)
new_est_exe
rem_exe_time

<= γ (4.4)

where the new_time with malleability does not exceed the double of static rem_time.

Malleability policies: In what follows in this section, we briefly describe three proposed policies for the
malleability of the resources: hand-off, aggressive, and keep-spare.

1) Hand-off: In this strategy, expansion/shrinking occurs only when the amount of expansion is significant.
A set of constraints, as shown in Algorithm 2, limits the expansion/shrinking events to the most useful ones.
The job J is modified by step n if n ≤ free_nodes− Jallocated_nodes. This makes the malleability less greedy,
as the job takes a portion of the free nodes and leaves an amount equal to its currently allocated node. This
strategy does not attempt to expand the job up to its max, but instead expands significantly and leaves some of
the free nodes for other jobs. Same for shrinking, as we never try to go to the minimum number of nodes in the
first place.

2) Aggressive: In the aggressive policy, the jobs are expanded/shrunken to their maximum/minimum nodes,
even if expansion costs all free_nodes. Algorithm 3 shows how this policy allows jobs to expand. Aggressive
expansion is implemented in two ways. The first is greedy enough to allow the job to expand while taking
all available free nodes if they are in the range of its maximum nodes, and to exclude it from shrinking after
this expansion while allowing the job to expand multiple times. The second allows shrinkage of that job after
expansion.

3) Keep-spare: This policy tries to use only a portion of free_nodes for expansion or a portion of allocated
nodes for reduction. The expansion algorithm is shown in Algorithm 4. In case of expansion: new_nodes =
int(i− num_assigned_nodes ∗ 0.3).

As the algorithms are similar for shrinking decisions, we skip them.

48

CHAPTER 4. USE CASES: EXPLOITING THE MODELS ADMIRE

Algorithm 3: Malleability Expand Aggressive policy for expansion
Input: List of jobs: J ; set of nodes: N ;
rmjobs← {j ∈ J : statej = RUNNING ∧ typej = MALLEABLE};
free_nodes← {n ∈ N : staten = FREE};
sorted_jobs← SORT(rmjobs, "SCAL_FACTOR");
for j in sorted_jobs do

if FEASIBLITY_EXPAND(j) then
for (n ≤ |j.max_nodes| − |j.assigned_nodes|,−1) do

if n ≤ |free_nodes| then
j.ASSIGN(new_nodes)
FREE_NODES.REMOVE(n);
BREAK;

end

end
end

end

Algorithm 4: Expand Keep-Spare policy
Input: List of jobs: J ; set of nodes: N ;
rmjobs← {j ∈ J : statej = RUNNING ∧ typej = MALLEABLE};
free_nodes← {n ∈ N : staten = FREE};
sorted_jobs← SORT(rmjobs, "SCAL_FACTOR");
for j in sorted_jobs do

if FEASIBLITY_EXPAND(j) then
for (n ≤ |jmax_nodes| − |jassigned_nodes|,-1) do

if (n > assigned_nodes)and(n ≤ |free_nodes|) then
nodes_new ← n− |jassigned_nodes| × limit%};
if nodes_new ≤ |free_nodes| ∧ nodes_new ≤ |jmax_nodes| then

j.ASSIGN(new_nodes)
free_nodes.REMOVE(n);
BREAK;

end
end

end
end

end

4.2 System Model
WP6 (task 6.2) exploited a workflow to model applications behaviour in HPC system, namely GreatNector,
which leverages the power of Extended Stochastic Symmetric Nets (ESSN), a sophisticated high-level for-
malism that enables the temporal modelling of system dynamics. In particular, it focuses on modelling the
dynamics of I/O queues at the system level based on IOPS and network bandwidth measurements, offering the
flexibility to define complex rate functions parametrically. The workflow is characterised by three main steps,
starting from the elaboration of traces of the application generated from WP5, their clusterisation into different
groups which will represent the application templates characterising all the applications with similar behaviour,
and the system calibration and simulation to fit the average traces of the application templates. Specifically, the
clustering was mainly carried out by exploiting the CONNECTOR package, while the model design, calibra-

49

ADMIRE CHAPTER 4. USE CASES: EXPLOITING THE MODELS

tion and simulation by the GreatMod framework. GreatMod was exploited to design the model and to simulate
the Continuous Time Markov process underlying the ESSN model using the Stochastic Simulation Algorithm.

Let us focus on the input applications traces, which are generated by the Always-On-Monitoring developed
in WP5 based on The TAU performance toolset. These traces are processed for filtering the unnecessary
information, and aggregating the time spent in a state, and the number of calls of that state in a specific time
interval for each application state that we want to consider (for instance I/O, MPI, etc). Successively, these
traces are clustered to highlight differences and similarities among the traces, and also to highlight similar
patterns in the application. Moreover, the homogeneous groups characterising a template application are used
to estimate the model’s unknown parameters to fit a specific log trace through the calibration functionality
provided by the framework.
Indeed, the application behaviour is intricately linked to the number of processors utilised. To streamline the
analysis and ensure a comprehensive understanding without segregating individual processors or considering
different applications the traces obtained using the same applications but with different numbers of processors,
Extra-P will be exploited. This normalisation process enables the consideration of the application’s dynamics in
a collective manner, abstracting away the individual processor distinctions. By applying Extra-P normalisation,
the focus shifts to a holistic perspective, allowing for a more generalised modelling approach that encapsulates
the influence of varying processor counts on the system dynamics. Specifically, by including Extra-P into the
GreatNector framework (as shown in Fig.4.2), it will be possible to consider the application traces in terms of
the model obtained by Extra-P to cluster the applications and to calibrate the ESSN model independently by the
number of processors. The application’s dependency on the number of processors and the utilisation of Extra-P

Traces

From Metric Proxy

2.Inter-clustering: Template-
applications definition

3. Intra-clustering: similar
patterns identification into the
template-applications

CLUSTERING

4.Model design: HPC-
ESSN model construction

5.Model calibration:
parameters estimation for each
template application

6.What-if analysis: system
simulation considering different
template-application

MODELING

1.Processing: Application
traces processed to infer the I/
O, MPI values of interest

Data processing

GreatNector

Extra-P

Figure 4.2: GreatNector framework including Extra-P.

normalisation represents an initial conceptualisation. Further refinement and exploration are anticipated as this
approach serves as a starting idea, with the potential for deeper investigation and optimisation in subsequent
stages of the research.

4.3 I/O Scheduling
In WP4, the IO-Sets [11] method for I/O scheduling was proposed, together with the Set-10 heuristic. In IO-
Sets, applications are classified into sets, and applications belonging to the same set perform I/O exclusively
(one at a time), while applications from distinct sets can perform I/O at the same time. Moreover, each set has a
priority that defines how much I/O bandwidth its applications receive when sharing the PFS with others. Differ-
ently from other I/O scheduling techniques, IO-Sets uses only one piece of information about the application:
the mean time between the start of consecutive I/O phases (also called “characteristic time”). Implementing

50

CHAPTER 4. USE CASES: EXPLOITING THE MODELS ADMIRE

IO-Sets in practice requires, therefore, obtaining the characteristic time for running applications. This can be
provided by FTIO, since the characteristic time is the period of I/O phases (reciprocal of the frequency). In this
section, we describe an experiment that evaluates this combination of IO-Sets with FTIO.

In case FTIO is used together with Set-10 (later denoted as "Set-10 + FTIO "), the priorities for the groups
(i.e., the sets) are calculated based on the period Td provided by FTIO.

We used the IO-Sets implementation on BeeGFS, developed in WP4 of ADMIRE [6]. Experiments were
conducted in the Grid’5000 (www.grid5000.fr) experimental platform, using the Gros cluster of the Nancy
site. A single node was deployed as the metadata server and management node, and other nodes are either OSS
or client nodes. Each OSS has a single OST, which uses the node-local hard disk for storage. See [6] for more
details about this experiment.

The IOR benchmarking tool was modified to use the TMIO library. Each IOR instance (representing a
different application) has a dedicated prediction mode FTIO, running on the same node and watching for its I/O
trace, which is updated after every I/O phase (due to a TMIO call). A custom the script parses the FTIO output
for the predicted period and confidence, calculates the priority according to the Set-10 heuristic, and writes it
to the /sys/kernel/config/iosets/[job id]/priority file, from where it is obtained by the BeeGFS client module
whenever the application issues new I/O requests.

We aimed at recreating one of the experiments shown in [11, Figure 4]: 16 concurrent applications execute,
clearly belonging to two separate sets, and inside each set, they all present the same period. IOR was used to
create one high-frequency application and 15 low-frequency ones: all of them use a single node (which is a
shared client node for all 16 applications), 8 processes, and write to file-per-process files using the fsync option
(-e). The high-frequency application has 200 compute phases of 18 seconds, each followed by I/O phases where
each process writes 16 MiB. Because the write performance with fsync was measured to be approximately 110
MiB/s, that means this application has a period of approximately 19.2 s. The low-frequency applications, on
the other hand, have compute phases of 360 seconds, followed by I/O phases where each process writes 320
MiB (for a period of ≈ 384 s).

Figure 4.3 shows the results, comparing four situations:

• “Set-10 + clairv.” is a clairvoyant application of the scheduling heuristic, meaning that the ideal (in
isolation) periods (19.2 or 384 s) are provided manually in advance.

• “Set-10 + FTIO” combines the heuristic with FTIO, which determines the actual periods at runtime. In
this case, Set-10 uses the most recent prediction from FTIO.

• “Set-10 + error” uses predictions worse than FTIO: the predictions given by FTIO are randomly increased
or decreased by a factor of 50% before provided to Set-10.

• “Original” corresponds to BeeGFS without any modifications and serves as the baseline.

The metrics were computed using the time frame between 400 and 3200 seconds after the start of the first
application, and are shown in Figure 4.3. The stretch quantifies the overall slowdown factor for an application
caused by inter-job file-system interference; the I/O slowdown represents the factor by which its I/O time was
increased. Thus, the lowest value of both metrics is 1. Both are calculated by taking the geometric mean of all
applications from each execution. The Utilization (∈ [0, 1]) is a system metric that specifies how much of the
node time was spent on computation instead of I/O. More details about these metrics are given in [11, Section
V-D], and more on this experiment in [6].

The results achieved with FTIO are close to the clairvoyant version—only 2.2% worse in stretch, 19% in I/O
slowdown, and 2.3% in utilisation. In contrast, the version where we inject errors to FTIO results made stretch
worse by 5%, utilization by 4%, and I/O slowdown 27% higher, compared to the “Set-10 + FTIO” version, in
addition to presenting higher variability. Compared to not using Set-10, the FTIO-powered version decreased
the mean stretch and I/O slowdown by 20% and 56%, respectively, and increased utilisation by 26%. These
results show how well FTIO fills the knowledge gap, making the improvements that Set-10 allows possible in
practice, where the period is not known in advance.

51

www.grid5000.fr

ADMIRE CHAPTER 4. USE CASES: EXPLOITING THE MODELS

Figure 4.3: Comparison of clairvoyant Set-10, Set-10 with FTIO, Set-10 with 50% error injected to the FTIO-
provided periods, and the original configuration without Set-10. The figures show the stretch (how much
slower jobs were compared to running in isolation: lower is better), the I/O slowdown (how much slower I/O
was compared to isolation: lower is better), and the utilization (how much of the time was NOT spent on I/O:
higher is better). The boxplots (with 1.5*IQR whiskers) group ten executions. The y-axes do not start at zero
and are all different.

4.4 Just-in-Time Staging
One of the use cases of FTIO is data staging between the back-end shared parallel file system (PFS) in a
compute cluster and the ad-hoc file system. In general, data staging is necessary because ad-hoc file systems
provide a new (initially empty) namespace that applications can use as a temporary high-performing storage
layer that scales with the number of participating compute nodes. Therefore, input data must be staged-into the
ad-hoc file system from the PFS and output data staged-out from the ad-hoc file system to the PFS. However,
because data staging usually begins before an application is started and after it ends, additional job wall clock
time is required for the staging process. Consequently, an ad-hoc file system may not benefit certain applications
with only little I/O intensity, where the time required for data staging results in a net increase of overall runtime.

Another approach leverages a characteristic of many HPC applications that are bulk-synchronous and al-
ternate I/O and computational phases. Moreover, bulk-synchronous applications, such as NEK5000, write out
data at specific step boundaries that are not read within the same compute job. In principle, it is, therefore,
possible to stage-out result data immediately after it was written before the application ends and to stage-in
data right before an application needs it; or just in time. To minimise interference, staging data should further
overlap the computational phase to avoid reducing I/O performance during an I/O phase.

As discussed earlier, FTIO can predict future I/O phases, which information can be used to schedule data
staging while the application is running. However, FTIO requires per-process I/O information to make such
predictions, and therefore, analytics tools that provide post-mortem analyses, e.g., via tracing, are insufficient.
Because the per-process I/O statistics can be collected directly within the ad-hoc file system, we have imple-
mented a proof-of-concept prototype into the GekkoFS client that collects the per-process I/O statistics. This
information can then be ingested into FTIO to make the corresponding future I/O predictions. This work is
currently work-in-progress and is planned to be completed within the scope of this project.

In the following, we present the instructions to configure the GekkoFS client to collect I/O statistics. At the
time of writing, the I/O statistics are written at the end of the application run. In the next step, we will include
a periodic dump of the latest I/O activity that is directly ingested into FTIO.

First, GekkoFS needs to be built with client metric support. Please refer to the readme and documentation
of GekkoFS for further build instructions1:

1https://storage.bsc.es/gitlab/hpc/gekkofs

52

https://storage.bsc.es/gitlab/hpc/gekkofs

CHAPTER 4. USE CASES: EXPLOITING THE MODELS ADMIRE

0 100 200 300 400 500 600 700 800 900 1000
I/O operations over time

400

600

800

1000

1200

1400

1600

Av
er

ag
e

wr
ite

 th
ro

ug
hp

ut
 (M

iB
/s

)
sin

ce
 th

e
pr

ev
io

us
 I/

O
op

er
at

io
n

Rank 0 Rank 1 Rank 2 Rank 3

Figure 4.4: The average write throughput for GekkoFS when running IOR with four MPI ranks over the number
of I/O operations. Each process wrote 512 KiB for each of the 1024 I/O operations (or 512 MiB in total).

1 cmake [...] -DGKFS_ENABLE_CLIENT_METRICS=ON ..

After the GekkoFS server instances are running, each client is configured separately to collect the client-side
I/O statistics. In this example, we use the widely-used IOR benchmark2 to generate an I/O workload sequen-
tially writing and reading 512 MiB per process with 4 participating MPI ranks. The environment variables
LIBGKFS_ENABLE_METRICS and LIBGKFS_METRICS_PATH define whether client-side metrics should
be collected and where they are stored:

1 mpiexec -np 4 -x LIBGKFS_ENABLE_METRICS=on \
2 -x LIBGKFS_METRICS_PATH=/tmp/gkfs_client_metrics \
3 -x LD_PRELOAD=/usr/local/lib64/libgkfs_intercept.so \
4 /opt/bin/ior -a POSIX -i 1 -o /tmp/gkfs_mountdir/iortest -t 512k -b 512m -F

In this example, the resulting statistics are placed into the /tmp/gkfs_client_metrics directory in
the MessagePack format that FTIO supports. When converted into a JSON format via the included gkfs_-
clientmetrics2json tool, the individual I/O statistics can be made human-readable. Figure 4.4 presents
the corresponding average throughput over 4 processes for 1024 consecutive write operations. The global
accumulated write throughput was 4,179 MiB per second over a runtime of 0.49 seconds.

FTIO offers a customer data format to reach a broader audience. For the example here, we utilised this
option to highlight this aspect and thus to pass the data to FTIO. For that, the -cf flag must be passed along
with a file that defines the parsing of the provided traces. To gain further confidence in the results, we executed
FTIO with the autocorrelation flag -c and lowered the tolerance value -t to detect if there is any dominant
frequency in the signal. Thus, we executed the following command:

$> ftio file.txt -o dbscan -t 0.6 -v -cf cutome_pattern.py

For this experiment, FTIO returned that the signal is not periodic. The result is illustrated in Figures 4.5
to 4.7. Figure 4.5 shows the single-sided power spectrum, including the frequency at 0 Hz (DC offset). As
observed, this frequency has by far the highest contribution, indicating the behaviour of the signal is nearly
constant. While FTIO usually excludes this frequency from the analysis, future versions will utilise it to make
such conclusions. In Figure 4.6, the temporal behaviour of the application is shown. As illustrated, the temporal

2https://github.com/hpc/ior

53

https://github.com/hpc/ior

ADMIRE CHAPTER 4. USE CASES: EXPLOITING THE MODELS

Figure 4.5: Normalized single-sided power spectrum from FTIO on the IOR example with GekkoFS.

behaviour of the signal is centred around the DC offset. The second highest frequency detected by FTIO
(coloured green), shows the variability of the signal around this value.

Figure 4.6: Temporal behaviour of the signal alongside the top three frequencies presented in it obtained by
executing FTIO on part of the trace.

Figure 4.7 shows the result from autocorrelation on the signal with FTIO. With autocorrelation, FTIO is
capable of increasing the confidence in the results. For this example, during the merging of the results from
DFT and autocorrelation, FTIO detected that the confidence is too low and that there is no dominant behaviour
in the signal.

Figure 4.7: Result from autocorrelation on the signal.

To further demonstrate the just-in-time staging aspect, we handle a second example, which has a periodic
behaviour. For that, we executed NEK5000 with GekkoFS with in total 200 steps on 8 nodes with in total 32
processes. Every 20 steps, I/O operations are performed. Note that while only Four ranks perform I/O, each one
of them is located on a different node. The average write throughput for the four ranks is shown in Figure 4.8.

Each of these ranks saved its trace, shown in Figure 4.8, to a dedicated file. Next, we merge all traces into
a single one named file.txt and provide again the same parsing file to FTIO. Furthermore, we use additionally
autocorrelation to merge the result with DFT and set the sampling frequency to 0.01 Hz. Thus, we executed:

54

CHAPTER 4. USE CASES: EXPLOITING THE MODELS ADMIRE

100 200 300 400 500
I/O operations over time

0

500

1000

1500

2000

Av
er

ag
e

wr
ite

 th
ro

ug
hp

ut
 (M

iB
/s

)
sin

ce
 th

e
pr

ev
io

us
 I/

O
op

er
at

io
n

Rank 0 Rank 1 Rank 2 Rank 3

Figure 4.8: The average write throughput for GekkoFS when running NEK5000 with 32 MPI ranks (8 nodes)
over the number of I/O operations. Four ranks perform I/O every 20 steps out of the 200 steps.

$> ftio file.txt -cf cutome_pattern.py -c -f 0.01

The results of this call are shown in Figure 4.9. As illustrated, FTIO detected a dominant frequency at
2e-05 Hz (i.e., 50088.8 s). Furthermore, FTIO overlapped the rank-level metric to obtain an application-level
one. During the analysis, 6 harmonics were ignored as they were multiples of two of the dominant frequency.
This was expected, as I/O bursts are presented in the signal (see Section 3.5.4). From DFT, FTIO return
that the confidence in the results is 51.64%. Since the -c flag was enabled, autocorrelation was additionally
executed, which in turn returned a confidence of 100%. Consequently, the final confidence FTIO provided for
this example was 83.83%, which is obtained by not only merging these values but also examining the agreed
predictions as mentioned in [46]. As shown in Figure 4.9, the high confidence is reasonable for this example.

With such as result, and since this example shows the writing behaviour of the application, the burst buffers
could be flushed just in time, such that they are available before the next phase occurs. This would allow us
to overcome the storage space restrictions such components impose. In the future, we will incorporate such
analysis in the staging strategy for the burst buffers alongside strategies to reduce congestion during the flushing
process. This would allow us to find the right instance to flush the buffers or load the data needed just in time.

Figure 4.9: Temporal behaviour of the application-level signal from NEK5000 with GekkoFS. FTIO internally
overlapped the rank-level metrics from Figure 4.8 to obtain the application-level bandwidth. FTIO detected a
dominant frequency as the green cosine wave depicts.

55

ADMIRE CHAPTER 5. CONCLUSION AND FUTURE PERSPECTIVES

5 Conclusion and Future Perspectives

In this deliverable, we have shown how ADMIRE developed specific methodologies to model and project per-
formance data. This undertaking materialised as an approach that we called continuous modelling. Continuous
modelling is about accumulating valorised metrics over time to acquire and enhance the understanding of the
applications running in a supercomputer. ADMIRE has peculiar needs as it spans the whole software stack
(from the I/O back-end to the application) and is proposed to implement holistic malleability at these various
levels. As such, we first devised a robust and scalable monitoring capability with the design choice of coalescing
metrics from multiple data sources, acknowledging the plurality of the heuristics guiding malleability.

Furthermore, we worked on extending Extra-P to leverage its advanced modelling capabilities to guide
modelling for the whole project. To do so, the metric proxy was modified to be able to invoke Extra-P auto-
matically, exposing a model server to the IC. Conjointly, a dimension under-exploited despite its paramount
importance for I/O has been explored: Time. FTIO is a new way of looking at performance data and one of the
big breakthroughs of the ADMIRE project. The ability to identify at scale the period of I/O (instead of simply
looking at volume transferred) allowed us to greatly enhance the projection capabilities not only between jobs
(moldability) but also inside a given job over time – the most challenging approach. As such, ADMIRE has
developed a wide range of models capable of characterising applications in the various steps of their life cycle.
As we exemplified, these automatically generated models provide ways of determining the best scale for a given
program, predicting total I/O yield, and guiding buffer flushes in the case of burst buffers. They implement a
complete toolbox that provides WP6 to guide the decisions of the IC, WP3 to perform job scheduling and bal-
ance the resource through the malleability manager, and finally WP4 and WP2 to take effective I/O scheduling
decisions that boost system utilisation and to optimise the usage of novel storage components such as burst
buffers.

All the tools implemented in this work package are open-source and freely available online to reproduce and
experiment with the newly developed features. We are now actively working on integrating and demonstrating
these modelling capabilities throughout the different components in ADMIRE and, in particular, to WP6 to
close the feedback loop of the project successfully by the end of the ADMIRE project. To this purpose, we
expose the modelling interfaces using mercury and provide representative test cases (using traces) to illustrate
malleability heuristics. Eventually, we are now working on running applications leveraging the end-to-end
ADMIRE infrastructure while tuning the piece-wise integration.

56

List of Acronyms and Abbreviations ADMIRE

List of Acronyms and Abbreviations

Adj.R2 Adjusted coefficient of determination

RSS Residual sum of squares

ADMIRE Adaptive multi-tier intelligent data manager for Exascale

DFT Discrete Fourier transformation

ESSN Extended Stochastic Symmetric Nets

GUI Graphical User Interface

HPC High Performance Computing

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

I/O Input/Output

IC Inteligent Controller

IDFT Inverse discrete Fourier transformation

IOPS I/O operations per second

JS JavaScript

JSON JavaScript Object Notation

JSONL JSON Lines file format, also known as newline-delimited JSON

LIMITLESS light-weight monitoring tool for large scale systems

MEBF Malleable Easy Backfilling algorithm

MPI Message-Passing Interface

TBON Tree Based Overlay Network

WP Work Package

57

ADMIRE Glossary

Glossary

API Application Programming Interface, a mechanism that enables an application
or service to access a resource within another application or service. The ap-
plication or service doing the accessing is called the client, and the application
or service containing the resource is called the server.

BSC Barcelona Supercomputing Center, Barcelona.

D4.2 Deliverable 4.2 from WP4 of the ADMIRE project: Software to support I/O
scheduling policies [37].

D5.3 Deliverable 5.3 from WP5 of the ADMIRE project: Report on the implemen-
tation of application I/O profiling [38].

D5.4 Deliverable 5.4 from WP5 of the ADMIRE project: Monitoring solution at
Exascale [39].

D6.3 Deliverable 6.3 from WP6 of the ADMIRE project: Runtime tools to tune I/O
system behaviour [40].

Extra-P Tool for automated performance modelling of HPC applications developed by
TUDA. See https://github.com/extra-p/extrap for more info.

FTIO Frequency Techniques for I/O. It is a tool developed in the ADMIRE project
to predict the period of the I/O phases using frequency techniques. The ap-
proach is described in detail in Section 3.5 and in [46]. The tool is pub-
licly available on GitHub: https://github.com/tuda-parallel/
FTIO.

GekkoFS A Temporary Distributed File System for HPC Applications. The tool is de-
veloped by JGU and BSC. See https://storage.bsc.es/gitlab/
hpc/gekkofs for more info.

IOR Is a parallel IO benchmark that can be used to test the performance of parallel
storage systems. For more info, see https://ior.readthedocs.io/
en/latest/.

JGU Johannes Gutenberg-Universität Mainz

NEK5000 Is a highly scalable spectral element computational fluid dynamics code for
solving the incompressible Navier-Stokes equations on 2D quadrilateral and
3D hexahedral meshes. For more info, see https://nek5000.github.
io/NekDoc/.

OSS An Object Store Server in the Lustre terminology is a computing server in
charge of managing the ingest of data, including generation of the data pro-
tection, and ship these data to the correct Object Store Target.

58

https://github.com/extra-p/extrap
https://github.com/tuda-parallel/FTIO
https://github.com/tuda-parallel/FTIO
https://storage.bsc.es/gitlab/hpc/gekkofs
https://storage.bsc.es/gitlab/hpc/gekkofs
https://ior.readthedocs.io/en/latest/
https://ior.readthedocs.io/en/latest/
https://nek5000.github.io/NekDoc/
https://nek5000.github.io/NekDoc/

Glossary ADMIRE

OST Object Store Target in the Lustre terminology is a storage server accommodat-
ing potentially a large number of hard drives and/or NMVes. The OST write
the data received from the OSS and make them persistent.

PFS Parallel File System, type of distributed file system supporting a global names-
pace and spread across multiple storage servers.

RPC Remote procedure call.

scalability bug A scalability bug is a part of the program whose scaling behaviour is uninten-
tionally poor, that is, much worse than expected.

SLURM Job submission system widely used.

TAU Tuning and Analysis Utilities. See https://www.cs.uoregon.edu/
research/tau/home.php for more details.

TMIO Tracing MPI-IO. It is a C++ library that intercepts MPI calls using the
PMPI interface and is attached to an application using the LD_PRELOAD
mechanism. The tool was developed in the ADMIRE project and is de-
scribed in detail in Section 2.5. It is publicly available on GitHub: https:
//github.com/tuda-parallel/TMIO

TUDA Technical University of Darmstadt, Germany.

WP2 Work package 2 of the ADMIRE project: Ad-hoc storage systems. The main
objective of this WP is the development of fast and scalable ad-hoc storage
systems.

WP3 Work package 3 of the ADMIRE project: Malleability management. The
main objective of this WP is to develop mechanisms to manage the combined
malleability of computation and I/O.

WP4 Work package 4 of the ADMIRE project: I/O scheduler. The main objective
of this WP is to achieve a inter-job storage scheduling and I/O coordination
that is not available today in production systems.

WP5 Work package 5 of the ADMIRE project: Sensing and profiling. The main
objective of this WP is to setup systems monitoring, I/O profiling, and perfor-
mance modelling tools amenable for exascale.

WP6 Work package 6 of the ADMIRE project: Intelligent controller. The main ob-
jective of this WP is to integrate cross-layer data to provide a holistic view of
the system to enable intelligent decisions for dynamically adapting the system
to the current and future workloads.

WP7 Work package 7 of the ADMIRE project: Application co-design. The main
objective of this WP is to analyze application codes to provide requirements as
co-design input to technical WPs (i.e., WP2-WP6) and to define suitable use
cases and benchmarks to prepare applications to optimally run with ADMIRE
technologies. It will thus evaluate the usability of the ADMIRE technologies
to demonstrate advances for end users.

59

https://www.cs.uoregon.edu/research/tau/home.php
https://www.cs.uoregon.edu/research/tau/home.php
https://github.com/tuda-parallel/TMIO
https://github.com/tuda-parallel/TMIO

ADMIRE BIBLIOGRAPHY

Bibliography

[1] V. Aggarwal, C. Yoon, A. George, H. Lam, and G. Stitt. Performance modeling for multilevel com-
munication in shmem+. In Proceedings of the Fourth Conference on Partitioned Global Address Space
Programming Model, PGAS ’10, New York, NY, USA, 2010. Association for Computing Machinery.

[2] Marco Aldinucci, Sergio Rabellino, Marco Pironti, Filippo Spiga, Paolo Viviani, Maurizio Drocco,
Marco Guerzoni, Guido Boella, Marco Mellia, Paolo Margara, Idillio Drago, Roberto Marturano,
Guido Marchetto, Elio Piccolo, Stefano Bagnasco, Stefano Lusso, Sara Vallero, Giuseppe Attardi, Alex
Barchiesi, Alberto Colla, and Fulvio Galeazzi. HPC4AI, an AI-on-demand federated platform endeavour.
In ACM Computing Frontiers, Ischia, Italy, May 2018.

[3] Guillaume Aupy, Olivier Beaumont, and Lionel Eyraud-Dubois. What size should your buffers to disks
be? In 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 660–
669. IEEE, 2018.

[4] Guillaume Aupy, Olivier Beaumont, and Lionel Eyraud-Dubois. Sizing and partitioning strategies for
burst-buffers to reduce IO contention. In IPDPS’19, pages 631–640. IEEE, 2019.

[5] Alexis Bandet, Francieli Boito, and Guillaume Pallez. Scheduling distributed I/O resources in HPC sys-
tems. 2024.

[6] Clément Barthélemy, Francieli Boito, Emmanuel Jeannot, Guillaum Pallez, and Luan Teylo. Implemen-
tation of an unbalanced I/O bandwidth management system in a parallel file system, 2024. Available at
https://inria.hal.science/hal-04417412.

[7] IOR Benchmark. Version 3.3.0. https://github.com/hpc/ior, 2020.

[8] Intel MPI Benchmarks. https://www.intel.com/content/www/us/en/docs/
mpi-library/user-guide-benchmarks/2021-2/overview.html, 2023.

[9] A. Bhattacharyya and Torsten Hoefler. PEMOGEN: Automatic Adaptive Performance Modeling During
Program Runtime. In Proceedings of the 23rd International Conference on Parallel Architectures and
Compilation (PACT’14), pages 393–404. ACM, Aug. 2014.

[10] Francieli Boito, Guillaume Pallez, Luan Teylo, and Nicolas Vidal. IO-sets: Simple and efficient ap-
proaches for I/O bandwidth management. IEEE Transactions on Parallel and Distributed Systems,
34(10):2783–2796, 2023.

[11] Francieli Boito, Guillaume Pallez, Luan Teylo, and Nicolas Vidal. Io-sets: Simple and efficient approaches
for I/O bandwidth management. IEEE Transactions on Parallel and Distributed Systems, 34(10):2783–
2796, 2023.

[12] Alexandru Calotoiu, Torsten Hoefler, Marius Poke, and Felix Wolf. Using automated performance mod-
eling to find scalability bugs in complex codes. In Proceedings of the international conference on high
performance computing, networking, storage and analysis, page 45, 2013.

60

https://inria.hal.science/hal-04417412
https://github.com/hpc/ior
https://www.intel.com/content/www/us/en/docs/mpi-library/user-guide-benchmarks/2021-2/overview.html
https://www.intel.com/content/www/us/en/docs/mpi-library/user-guide-benchmarks/2021-2/overview.html

BIBLIOGRAPHY ADMIRE

[13] Philip Carns, Kevin Harms, William Allcock, Charles Bacon, Samuel Lang, Robert Latham, and Robert
Ross. Understanding and Improving Computational Science Storage Access through Continuous Charac-
terization. ACM Transactions on Storage, 7(3):8:1–8:26, October 2011.

[14] Philip Carns, Robert Latham, Robert Ross, Kamil Iskra, Samuel Lang, and Katherine Riley. 24/7 charac-
terization of petascale I/O workloads. In Cluster’09 Workshops, pages 1–10. IEEE, 2009.

[15] Philip Carns, Robert Latham, Robert Ross, Kamil Iskra, Samuel Lang, and Katherine Riley. 24/7 charac-
terization of petascale I/O workloads. In 2009 IEEE International Conference on Cluster Computing and
Workshops, pages 1–10, 2009.

[16] Matthieu Dorier, Gabriel Antoniu, Rob Ross, Dries Kimpe, and Shadi Ibrahim. CALCioM: Mitigating
I/O interference in HPC systems through cross-application coordination. In IPDPS’14, pages 155–164.
IEEE, 2014.

[17] Matthieu Dorier, Gabriel Antoniu, Rob Ross, Dries Kimpe, and Shadi Ibrahim. Calciom: Mitigating I/O
interference in HPC systems through cross-application coordination. In 2014 IEEE 28th International
Parallel and Distributed Processing Symposium, pages 155–164, 2014.

[18] Paul R. Eller, Torsten Hoefler, and William Gropp. Using performance models to understand scalable
krylov solver performance at scale for structured grid problems. In Proceedings of the ACM International
Conference on Supercomputing, ICS ’19, page 138–149, New York, NY, USA, 2019. Association for
Computing Machinery.

[19] Ana Gainaru, Guillaume Aupy, Anne Benoit, Franck Cappello, Yves Robert, and Marc Snir. Scheduling
the I/O of HPC applications under congestion. In 2015 IEEE International Parallel and Distributed
Processing Symposium, pages 1013–1022. IEEE, 2015.

[20] Ana Gainaru, Guillaume Aupy, Anne Benoit, Franck Cappello, Yves Robert, and Marc Snir. Scheduling
the I/O of HPC applications under congestion. In 2015 IEEE International Parallel and Distributed
Processing Symposium, pages 1013–1022, 2015.

[21] Salman Habib, Vitali Morozov, Hal Finkel, Adrian Pope, Katrin Heitmann, Kalyan Kumaran, Tom Pe-
terka, Joe Insley, David Daniel, Patricia Fasel, Nicholas Frontiere, and Zarija Lukic. The Universe at
extreme scale: Multi-petaflop sky simulation on the BG/Q. In 2012 International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1–11, Salt Lake City, UT, November
2012. IEEE.

[22] Torsten Hoefler, William Gropp, William Kramer, and Marc Snir. Performance modeling for systematic
performance tuning. In State of the Practice Reports, SC ’11, pages 1–12, New York, NY, USA, November
2011. Association for Computing Machinery.

[23] Wei Hu, Guang-ming Liu, Qiong Li, Yan-huang Jiang, and Gui-lin Cai. Storage wall for exascale super-
computing. Frontiers of Information Technology & Electronic Engineering, 17(11):1154–1175, Novem-
ber 2016.

[24] Mihailo Isakov, Eliakin del Rosario, Sandeep Madireddy, Prasanna Balaprakash, Philip Carns, Robert B.
Ross, and Michel A. Kinsy. HPC I/O Throughput Bottleneck Analysis with Explainable Local Models.
In SC’20, pages 1–13, 2020.

[25] Emmanuel Jeannot, Guillaume Pallez, and Nicolas Vidal. Scheduling periodic I/O access with bi-colored
chains: models and algorithms. J. of Scheduling, 24(5):469–481, 2021.

[26] K Senthamarai Kannan, K Manoj, and S Arumugam. Labeling methods for identifying outliers. Interna-
tional Journal of Statistics and Systems, 10(2):231–238, 2015.

[27] LLNL. Kripke. https://github.com/LLNL/Kripke.

61

https://github.com/LLNL/Kripke

ADMIRE BIBLIOGRAPHY

[28] LLNL. CORAL Benchmark Codes - HACC IO. https://asc.llnl.gov/coral-benchmarks#
hacc, 2020.

[29] Aniruddha Marathe, Rushil Anirudh, Nikhil Jain, Abhinav Bhatele, Jayaraman Thiagarajan, Bhavya
Kailkhura, Jae-Seung Yeom, Barry Rountree, and Todd Gamblin. Performance modeling under resource
constraints using deep transfer learning. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, SC ’17, New York, NY, USA, 2017. Association
for Computing Machinery.

[30] Nafiseh Moti, André Brinkmann, Marc-André Vef, Philippe Deniel, Jesús Carretero, Philip H. Carns,
Jean-Thomas Acquaviva, and Reza Salkhordeh. The I/O trace initiative: Building a collaborative I/O
archive to advance HPC. In Proceedings of the SC ’23 Workshops of The International Conference on
High Performance Computing, Network, Storage, and Analysis, SC-W 2023, Denver, CO, USA, November
12-17, 2023, pages 1216–1222. ACM, 2023.

[31] MPI Forum. MPI: A Message-Passing Interface Standard, June 2021.

[32] Mohammad Abu Obaida, Jason Liu, Gopinath Chennupati, Nandakishore Santhi, and Stephan Eiden-
benz. Parallel application performance prediction using analysis based models and HPC simulations.
In Proceedings of the 2018 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation,
SIGSIM-PADS ’18, page 49–59, New York, NY, USA, 2018. Association for Computing Machinery.

[33] University of Turin. Cluster documentation. https://hpc4ai.unito.it/documentation/,
2023.

[34] Guillaume Pallez. Model Design and Accuracy for Resource Management in HPC. PhD thesis, Université
de Bordeaux, 2023.

[35] F. Petrini, D.J. Kerbyson, and S. Pakin. The Case of the Missing Supercomputer Performance: Achieving
Optimal Performance on the 8,192 Processors of ASCI Q. In SC ’03: Proceedings of the 2003 ACM/IEEE
Conference on Supercomputing, pages 55–55, November 2003.

[36] James Price and Simon McIntosh-Smith. Improving auto-tuning convergence times with dynamically
generated predictive performance models. In Proceedings of the 2015 IEEE 9th International Symposium
on Embedded Multicore/Many-Core Systems-on-Chip, MCSOC ’15, page 211–218, USA, 2015. IEEE
Computer Society.

[37] ADMIRE project. Deliverable 4.2: Software to support I/O scheduling policies. https://
admire-eurohpc.eu/wp-content/uploads/2024/02/D4_2_admire.pdf, 2023.

[38] ADMIRE project. Deliverable 5.3: Report on the implementation of application I/O profil-
ing. https://admire-eurohpc.eu/wp-content/uploads/2023/07/D5_3_Report_
on_the_implementation_of_application_IO_Profiling.pdf, 2023.

[39] ADMIRE project. Deliverable 5.4: Monitoring solution at Exascale. https://www.dropbox.com/
s/mx831mokb2w2tsy/D5_4_Monitoring_solution_at_exascale.pdf?dl=0, 2023.

[40] ADMIRE project. Deliverable 6.3: Runtime tools to tune I/O system behaviour. https://www.
dropbox.com/s/agfddcumv1vfs9s/D6_3_admire.pdf?dl=0, 2023.

[41] Marcus Ritter, Alexandru Calotoiu, Sebastian Rinke, Thorsten Reimann, Torsten Hoefler, and Felix Wolf.
Learning cost-effective sampling strategies for empirical performance modeling. In 2020 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), pages 884–895, 2020.

[42] Marcus Ritter, Alexander Geiß, Johannes Wehrstein, Alexandru Calotoiu, Thorsten Reimann, Torsten
Hoefler, and Felix Wolf. Noise-resilient empirical performance modeling with deep neural networks.
In 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS), page 23–34, May
2021.

62

https://asc.llnl.gov/coral-benchmarks#hacc
https://asc.llnl.gov/coral-benchmarks#hacc
https://hpc4ai.unito.it/documentation/
https://admire-eurohpc.eu/wp-content/uploads/2024/02/D4_2_admire.pdf
https://admire-eurohpc.eu/wp-content/uploads/2024/02/D4_2_admire.pdf
https://admire-eurohpc.eu/wp-content/uploads/2023/07/D5_3_Report_on_the_implementation_of_application_IO_Profiling.pdf
https://admire-eurohpc.eu/wp-content/uploads/2023/07/D5_3_Report_on_the_implementation_of_application_IO_Profiling.pdf
https://www.dropbox.com/s/mx831mokb2w2tsy/D5_4_Monitoring_solution_at_exascale.pdf?dl=0
https://www.dropbox.com/s/mx831mokb2w2tsy/D5_4_Monitoring_solution_at_exascale.pdf?dl=0
https://www.dropbox.com/s/agfddcumv1vfs9s/D6_3_admire.pdf?dl=0
https://www.dropbox.com/s/agfddcumv1vfs9s/D6_3_admire.pdf?dl=0

BIBLIOGRAPHY ADMIRE

[43] Shane Snyder, Philip Carns, Kevin Harms, Robert Ross, Glenn K Lockwood, and Nicholas J Wright.
Modular HPC I/O characterization with darshan. In 2016 5th workshop on extreme-scale programming
tools (ESPT), pages 9–17. IEEE, 2016.

[44] Jerome Soumagne, Dries Kimpe, Judicael Zounmevo, Mohamad Chaarawi, Quincey Koziol, Ahmad Af-
sahi, and Robert Ross. Mercury: Enabling remote procedure call for high-performance computing. In
2013 IEEE International Conference on Cluster Computing (CLUSTER), pages 1–8. IEEE, 2013.

[45] Jingwei Sun, Guangzhong Sun, Shiyan Zhan, Jiepeng Zhang, and Yong Chen. Automated performance
modeling of HPC applications using machine learning. IEEE Transactions on Computers, 69(5):749–763,
2020.

[46] Ahmad Tarraf, Alexis Bandet, Francieli Boito, Guillaume Pallez, and Felix Wolf. Capturing periodic I/O
using frequency techniques. In Proc. of the 38th IEEE International Parallel and Distributed Processing
Symposium (IPDPS), San Francisco, CA, USA, pages 1–14. IEEE, May 2024. (accepted).

[47] Ahmad Tarraf, Alexis Bandet, Francieli Boito, Guillaume Pallez, and Felix Wolf. Capturing Periodic I/O
Using Frequency Techniques [Data Set], February 2024.

[48] Marc-André Vef, Nafiseh Moti, Tim Süß, Tommaso Tocci, Ramon Nou, Alberto Miranda, Toni Cortes,
and André Brinkmann. Gekkofs - a temporary distributed file system for HPC applications. In 2018 IEEE
International Conference on Cluster Computing (CLUSTER), pages 319–324, 2018.

[49] Chen Wang, Jinghan Sun, Marc Snir, Kathryn Mohror, and Elsa Gonsiorowski. Recorder 2.0: Efficient
Parallel I/O Tracing and Analysis. In 2020 IEEE International Parallel and Distributed Processing Sym-
posium Workshops (IPDPSW), pages 1–8, May 2020.

[50] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an insightful visual performance
model for multicore architectures. Communications of the ACM, 52(4):65–76, Apr 2009.

[51] Wenxiang Yang, Xiangke Liao, Dezun Dong, and Jie Yu. A quantitative study of the spatiotemporal I/O
burstiness of HPC application. In 2022 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), pages 1349–1359, 2022.

[52] Zhou Zhou, Xu Yang, Dongfang Zhao, Paul Rich, Wei Tang, Jia Wang, and Zhiling Lan. I/O-aware batch
scheduling for petascale computing systems. In Cluster’15, pages 254–263. IEEE, 2015.

63

	List of Figures
	Introduction
	Gathering the Monitoring Data
	Enabling Job Tracking in the Metric Proxy
	Per Job Profiles
	Generating Extra-P Supported Traces
	Trace Support
	TMIO

	Modelling I/O in ADMIRE
	Continuous Modelling: Refining the Models
	From Data to Models
	Reliability of I/O Information
	Integration With the Intelligent Controller

	Extra-P in ADMIRE
	Extra-P Interfaces
	Extracting Specific Performance Models
	Accessing the Performance Models
	Implementing the Model Server in the Metric Proxy

	Modelling I/O With Extra-P
	Examples
	IMB-IO
	IO Skeleton Application
	Darshan Support
	TMIO and Extra-P: Asynchronous I/O Requirements

	FTIO
	The Challenge of Finding I/O Phases
	Temporal I/O Behaviour
	Discrete Fourier Transformation
	Outlier Detection
	Confidence Metrics
	Online Approach: Predicting the Frequency of the I/O Phases at Runtime
	Examples
	FTIO Meets Extra-P

	Use Cases: Exploiting the Models
	Job Scheduling
	A malleability scheduling algorithm

	System Model
	I/O Scheduling
	Just-in-Time Staging

	Conclusion and Future Perspectives
	List of Acronyms and Abbreviations
	Glossary

