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Executive Summary

The ADMIRE project is dedicated to designing and implementing a platform where an active I/O stack can dy-
namically adjust computation and storage requirements through intelligent global coordination, the malleability
of computation and I/O, and the scheduling of storage resources along all levels of the storage hierarchy.

In this deliverable, we present a complementary approach to the ad-hoc storage solution developed in the
ADMIRE project, aiming to define an I/O coordination language and the related middleware component (CA-
PIO – Cross-Application Programmable I/O) with the primary objective of transparently injecting I/O streaming
capabilities into file-based loosely-coupled workflows. By leveraging user insights provided through a JSON-
based I/O coordination language (CLIO – Coordination Language for I/O), the CAPIO middleware improves
computation-I/O overlap without the need to change the application code of the workflow modules. We first
describe the declarative I/O coordination language as a primary component of the CAPIO infrastructure, focus-
ing both on syntax and semantics features; then, we describe the CAPIO’s runtime system. We also present two
use cases, 1000 Genome and WRF-visualization workflows, to validate the expressivity of the I/O coordination
language and the performance of the CAPIO runtime system.
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Chapter 1

Introduction

Challenges in the current HPC scenario are strongly related to the growing amount of data to manage from the
application side and a variety of new computing (e.g., accelerators) and storage (multi-tier hierarchy) solutions
from the architectural one. The main objective of the ADMIRE project is to create an I/O stack that can dynam-
ically fulfill computation and storage requirements through data analytics, runtime coordination, computation
and I/O malleability, and scheduling of storage resources at all levels. The I/O coordination language proposed
in this deliverable, with its related implementation, adds a new component to the ADMIRE dynamic storage
management, offering a complementary solution exploiting unique users’ knowledge.

1.1 ADMIRE Architecture

ADMIRE architecture comprises several active modules working collaboratively to execute multiple applica-
tions on an HPC Platform. It is designed to dynamically provide computational and I/O resources by integrating
information coming from very different sources, including user requirements, resource availability, and appli-
cation characteristics. The Intelligent Controller (IC) serves as the central orchestrator within the ADMIRE
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architecture, facilitating communication and coordination among its various components. Figure 1.1 illustrates
the main interactions between ADMIRE components and the information, data, and controls exchanged, also
specifying the ADMIRE work packages (WP) where the components are developed. The backend storage, typ-
ically a parallel system such as BeeGFS1 and Lustre2, is accompanied by an ad-hoc storage system (WP2), that
provides each application with a high-performance storage system tailored to the application’s characteristics.
Both storage tiers are coordinated by the I/O scheduler (WP4) responsible for the ad-hoc storage deployment
and configuration, the specification of quality-of-service metrics, and the implementation of I/O scheduling
policies. ADMIRE-enabled applications are executed on the platform using Slurm commands given by the
IC, also considering suggestions from the malleability manager (WP3). Applications can provide user-defined
application-specific information to the system to aid the identification of I/O patterns and reconfiguration-safe
states in which malleability commands can be executed.

ADMIRE ad-hoc storage system [1] is a dynamic module that accelerates the I/O performance of scientific
applications, significantly reducing I/O traffic to the general-purpose backend storage. Different components
are integrated into the ad-hoc storage module, such as GekkoFS [2], Expand [3], and Hercules [4], and they are
all mainly focused on optimizing the management of the general purpose storage backends. A complementary
approach to the ad-hoc storage solution in ADMIRE has been investigated and implemented in task 6.4, leading
to the definition of an I/O coordination language and the related middleware component, CAPIO [5]. This
new approach capitalizes on the information provided by users to inject I/O streaming capabilities into file-
based workflows, improving the computation-I/O overlap without needing to change the application code.
In practice, CAPIO enables the transparent transformation of POSIX I/O system calls related to files (e.g.,
read and write) into data communications between producers and consumers of those files. Therefore, it
enables efficient handling of data streaming between different applications (or components) of the applications
workflow. By leveraging user-provided insights, such as data dependencies and characteristics of the data
production (i.e., writes) and usage (reads), the system can tailor communication protocols to optimize
performance and efficiency without changing the application code. This personalized approach enables the
system to adapt to the unique demands of each workflow, exploiting unique users’ knowledge and guaranteeing
smooth and efficient data streaming processes throughout the application lifecycle.

From the ADMIRE perspective, this means adding a new component between the ad-hoc storage and the
applications, which, in specific cases, can convert conventional I/O operations into streamlined communica-
tions, thereby mitigating traffic congestion and alleviating the burden of storage management. While ad-hoc
storage remains essential for cases requiring persistent storage or when no additional hints are provided by the
users, the complementary availability of this component enhances overall system performance and resource
utilization.

1.2 I/O coordination in Workflow

Efficient I/O coordination is crucial in workflow management as it ensures seamless and efficient execution
of application modules comprising the workflow while respecting input and output data dependencies. Input
dependencies, typically in the form of data files in traditional file-based workflow, are the needed input data for
executing the processing of workflow modules, while output dependencies include the resultant files generated
upon processing the inputs. In situ workflow refers to a workflow, i.e., a collection of programs with their
data dependencies, executing concurrently in a cluster system and communicating through the memory and
interconnect of the cluster system instead of physical storage through the parallel/distributed filesystem. A
classic example of in situ workflow is a simulation task coupled with the data analysis task so that the data
analysis task starts while data produced by the simulation is still resident in memory, rather than after having
saved all the output data to disk for post-processing.

Coordinating workflow modules requires clearly defining the source of inputs, the dependencies associated
with each module working as intermediate steps of the workflow, and the sink modules, i.e., those responsible
for providing the final results. The aim is to overlap the computation of the workflow modules with the com-

1https://www.beegfs.io/c/
2https://www.lustre.org/
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Figure 1.2: Schematic example of a two-step file-based workflow in which application modules (S and Q)
communicate using files. On the right-hand side are sketched two possible executions: loosely-coupled batch
execution of the S and Q vs. their concurrent execution with the CAPIO Middleware.

munication needed to exchange data among modules to optimize the makespan. This can be accomplished only
by carefully coordinating I/O data dependencies among different workflow modules to start the execution of
modules as soon as their input data dependencies have been produced.

Tools in charge of exposing coordination semantics to the users and orchestrating workflow executions are
called Workflow Management Systems (WMSs) [6]. High-level WMSs express coordination semantics using a
host-independent medium. Some WMSs rely on a Domain Specific Language (DSL), like the Common Work-
flow Language (CWL) [7], whereas others adopt a general-purpose programming language (e.g., Pegasus [8])
or a GUI (e.g., Jupyter Workflow [9]). These approaches are very flexible, as they do not impose constraints on
the host application code and do not require any modification to the business logic (a job in a workflow is often
seen as a black box from the WMS viewpoint). However, the fact that the host application cannot communicate
with the coordination layer imposes specific semantics that we define as on-termination, i.e., produced output
data dependencies are propagated to consumer modules only after the producers have terminated their execu-
tion and thus consolidated all produced data. The on-termination semantics forces loosely-coupled execution
(i.e., batch execution) of the directly connected workflow components. We will discuss the on-termination
semantics in the context of Workflows in Section 2.2.

In HPC facilities, the contention for the I/O bandwidth of the shared file system is often the main obstacle to
scalability in traditional file-based workflows. Considering a two-step pipeline workflow sketched in Figure 1.2.
Step S produces k files, consumed as input data by the second step Q. The files are stored on a shared file
system, which sustains wB and rB write and read bandwidths that non-linearly depend on the file size. For
the sake of simplicity, suppose that files are equally sized and bandwidth is constant. If S writes files of size
N and Q reads files of M bytes, then the makespan TT depends on the compute time TC = TS

C + TQ
C and the

total I/O time TI/O = TS
I/O + TQ

I/O, such that:

max
(
TC , TI/O

)
≤ TT ≤ TC + TI/O (1.1)

TI/O is the total time spent producing and consuming the tokens in the workflow model. It can be described as:

TI/O = k ·
(

N

wB
+

M

rB

)
(1.2)

According to Eq. (1.2), two classes of techniques aiming to mitigate the I/O overhead can be defined.
The first class of techniques aims to maximize wB and rB and is used in the so-called in situ work-

flow model to overcome the inherent bottleneck arising from file-based communications. Libraries such as
HDF5 [10] and ADIOS [11] improve I/O by providing the application programmer with higher-level storage
management APIs implemented on top of different I/O backends. For example, ADIOS enables the selection
of I/O backends through an external XML-based configuration file.
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The second class of I/O optimizations aims to minimize the numerator of Eq. (1.2). The so-called in-transit
data processing model belongs to this second class [12]. For example, compressing and decompressing data on
the fly during I/O can reduce N and M . Also, data format conversion can help when the data format consumed
by Q differs from that produced by S. Note that in-transit processing can reduce TI/O and increase TC .

Eventually, a different approach for optimizing I/O in data-intensive workflows involves enhancing the in
situ workflow model with I/O coordination capability to exploit data streaming and overlap I/O and computation
between consecutive steps. The CAPIO middleware [5] aims to do this without modifying/patching the appli-
cation code of the workflow modules by intercepting POSIX system calls (SCs) and leveraging a declarative
I/O coordination language.

The remainder of this document is organized as follows. Chapter 2 introduces the declarative I/O coor-
dination language as the primary component of the CAPIO infrastructure. Chapter 3 describes the software
architecture of the CAPIO middleware. Chapter 4 demonstrates the use of the CAPIO Middleware in two
distinct use-cases, namely 1000 Genome and WRF-visualization workflows. Finally, Chapter 5 draws some
conclusions and potential future directions.

7
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Chapter 2

I/O Coordination Language

Introduction

This chapter presents a new I/O coordination language that allows users to annotate file-based workflow data
dependencies with synchronization semantics information related to files and directories. The coordination
language, called CLIO (Coordination Language for I/O), aims to enable the transparent overlap of computation
and I/O operations among distinct producer-consumer application modules.

The language used for expressing the I/O coordination language syntax and semantics is JSON (JavaScript
Object Notation). JSON is not tied to any particular programming language or platform and is widely sup-
ported across various programming languages (Java, C++, Python, etc.). Although it is not the most commonly
adopted language in the context of high-level coordination languages for expressing parallel computations, it
provides automatic syntax validation features through the JSON schema, allowing us to focus more on the
semantics aspects of the I/O coordination language. JSON is a well-recognized language in various computer
science domains as it stems from simplicity, flexibility, and expressivity. Using JSON as the base syntax of the
CAPIO coordination language presented in this document can make the learning curve less steep for the users.

2.1 Language syntax

In this section, we illustrate the syntax of the I/O coordination language. The syntax is expressed in JSON
format. JSON syntax format is based on two primary structures: objects and arrays. An object is a collection
of key/value pairs, where the key is a string identifier, usually a mnemonic name. An array is an ordered list of
values.

We will refer to the JSON file written according to the I/O coordination language syntax as the CAPIO
configuration file, as it is used by the CAPIO middleware to enforce files’ synchronization semantics between
consecutive workflow modules.

The CAPIO configuration file comprises five sections:

1. Workflow Name: identifies the application workflow composed by multiple application modules.

2. IO_Graph describes file data dependencies among application modules.

3. Alias: groups under a convenient name a set of files or directories.

4. Permanent: defines which files must be kept on the permanent storage at the end of the workflow
execution.

5. Exclude: identifies the files and directories not handled by CAPIO.

6. Home-node policy: defines different file mapping policies to establish which CAPIO servers store which
files.

8
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We shall describe the language syntax related to each section in the following sections. Since the CAPIO
language deals with I/O objects, i.e., files and directories, it supports wildcards (i.e., special characters that
are used to specify unknown characters in a text), which can be used in file and directory names instead of
enumerating all the files/directories that an application might produce or read (e.g., file*.dat). Currently, the
language handles two wildcards: 1) ‘*’ that matches any sequence of characters of length ≥ 0; 2) ‘?’ that
matches a single character. Wildcards can be used in all values in which a file name or a directory name is
expected.

Workflow name section

This section is identified by the keyword name (see Listing 2.1). The name is used as an identifier for the
current application workflow. This is useful as it is possible to distinguish different application workflows
running on the same machine.

Listing 2.1: The workflow name.
{

"name" :"my_workflow",
...

}

IO-Graph section

This section defines the dependencies between input and output streams between application modules compris-
ing the workflow. It is identified by the keyword IO_Graph, and it requires an array of objects. Those objects
specify the input and output streams for each application component. Each object defines the following items:

• name: The name of the application. This keyword is mandatory.

• input_stream: This keyword identifies the input files and directories the application module is ex-
pected to read. Its value is a vector of strings. This keyword is optional.

• output_stream: This keyword identifies a vector of files and directory names, i.e., the files and
directories the application module is expected to produce. Its value is a vector of strings. This keyword
is optional.

• streaming: This optional keyword identifies the files and directories with their streaming semantics,
i.e., the “commit and firing rules” (the different semantics are described with details in Section 2.2).

Its value is an array of objects. Each object may define the following attributes:

– name: The filenames to which the rule applies. The value of this keyword is an array of filenames.

– dirname: The directory names to which the rule applies. The value of this keyword is an array of
directory names.

– committed: This keyword defines the “commit rule” associated with the files or directories iden-
tified with the keywords name and dirname, respectively. Its value can be either on_close:N
(where N is an integer ≥ 1), on_termination, or on_file if the “commit rule” applies to
filenames (i.e., if the name keyword is name). Instead, if the “commit rule” applies to direc-
tory names, its value can be either on_termination, on_file, or n_files:N (where N
is an integer ≥ 1). If the committed keyword is not specified, the default “commit rule” is
on_termination. If the commit rule semantics is on_file, then the keyword files_deps,
whose value is an array of filenames or directory names, defines the set of dependencies.

– mode: This keyword defines the “firing rule” associated with the files and directories identified
with the keys name and dirname, respectively. Its value can be either update or no_update.
If the mode keyword is not specified, the default “firing rule” is update.

9
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Listing 2.2 shows a valid IO_Graph section with two application modules, namely writer and reader, part
of the workflow “my_workflow”. The writer produces three files in output (file0.dat, file1.dat, and file2.dat)
and one directory (dir). Each file is associated with distinct streaming semantics (i.e., distinct “commit and
firing rules”). The reader takes in input all files produced by the writer module.

Listing 2.2: The I/O dependency graph.
{

"name" :"my_workflow",
"IO_Graph": [
{
"name": "writer",
"output_stream": ["file0.dat","file1.dat","file2.dat","dir"],
"streaming": [

{
"name": ["file0.dat" ],
"committed": "on_termination",
"mode": "update"

},
{

"name": ["file1.dat" ],
"committed": "on_close",
"mode": "update"

},
{

"name": ["file2.dat" ],
"committed": "on_close:10",
"mode": "no_update"

},
{

"dirname": ["dir" ],
"committed": "n_files:1000",
"mode": "no_update"

}
]

},
{
"name": "reader",
"input_stream": ["file0.dat", "file1.dat", "file2.dat", "dir"]

}
]

...
}

Aliases section

The aliases section, identified by the keyword aliases, is useful to reduce the verbosity of the enumeration
of files an application can consume or produce. It is a vector of objects composed of the following items:

• group_name: the alias identifier

• files: an array of strings representing file names.

In Listing 2.3 we report an example of how to define aliases for disjoint sets of file names.

Listing 2.3: How to define aliases.
{

"name" :"my_workflow",
"aliases" :[
{
"group_name" :"group-even",
"files" :["file0.dat", "file2.dat", "file4.dat"]

},
{
"group_name" :"group-odd",
"files" :["file1.dat", "file3.dat", "file5.dat"]

}
]

10
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...
}

Permanent section

This language section, identified by the keyword permanent, is used to specify those files that will be stored
on the filesystem at the end of the workflow execution. Its value is an array of file names (whose values can
also be aliases).Listing 2.4 shows a sketch of an example of how to define the permanent section. At the end
of the execution of “my_workflow”, the file output.dat and all files belonging to group0 will be stored in the
file system.

Listing 2.4: How to define which files will be stored into the filesystem at the end of workflow execution.
{

"name" :"my_workflow",
"permanent" :["output.dat", "group0" ]
...

}

Exclude section

This section, identified by the keyword exclude, is used to specify those files that will not be handled by
CAPIO even if they will be created inside the CAPIO_DIR directory. Its value is an array of file names (whose
values can also be aliases).

Listing 2.5: How to define which files will not be handled by CAPIO.
{

"name" :"my_workflow",
"exclude" :["file1.dat", "group0", "*.tmp", "*~" ]
...

}

Listing 2.5 shows an example of how to define the section exclude. The file1.dat, all files part of the group0,
all temporary files ending with ".tmp", and all files ending with the character ’ ’ will be ignored by CAPIO.

Home-node policy section

This section allows the CAPIO user to selectively choose the CAPIO server node where all files (or a subset
of them) and their associated metadata should be stored. The syntax enabling this option is shown in listing
2.6. The user can define different policies for different files. In the current version of the CAPIO language,
the home node policy options are: create, manual, and hashing. These three keywords are optional,
i.e., the user can avoid setting them explicitly in the CAPIO configuration file. In this latter case, the default
policy adopted by the CAPIO middleware for the file-to-node mapping is the create one. Additionally, there
cannot be filename overlap among the policies specified (i.e., the intersection of the set defined by the different
home-node policies must be empty). For the hashing and the create policies, the value is an array of files.
For the manual configuration, the syntax is more verbose and requires defining, for each file or set of files, the
logical identifier of the application process whose associated CAPIO server (i.e., the server process running on
the same node where the application process is running) will store the file. With this information, each CAPIO
server may statically know the file-to-node mapping and thus retrieve the node where this process is executing
at runtime. For a detailed explanation of the semantics of all the home node policies, please refer to section 2.3.

Listing 2.6: Home node policies.
{

"name" :"my_workflow",
"IO_Graph": [
{
"name": "writer",

11
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"output_stream": ["file*.dat" ],
"streaming": [

{
"name": ["file*.dat" ],
"committed": "on_close"

}
]

},
{
"name": "reader",
"input_stream": ["file*.dat" ]

}
],
"home-node-policy": {

"create": ["file0.dat", "file1.dat"],
"manual": [

{
"name" :["file2.dat", "file3.dat" ],
"app_node": "writer:0"

},
{

"name": ["file4.dat", "file5.dat" ],
"app_node": "writer:1"

}
],
"hashing": ["file6.dat", "file7.dat"]

}
}

Wildcards potential ambiguity

The CAPIO language syntax leverages wildcards to provide the user with flexibility and reduce the burden of
enumerating all files and directories. However, using wildcards in the language syntax can introduce unexpected
behavior due to unintended matches or undefined behavior due to multiple matches associated with different
semantics rules. To clarify the point, let us consider the example reported in Listing 2.7.

Listing 2.7: Example of ambiguity arising when using wildcards.
{

"name" :"my_workflow",
"IO_Graph": [
{
"name": "writer",
"output_stream": ["file1.txt", "file2.txt", "file1.dat", "file2.dat"],
"streaming": [

{
"name": ["file*" ],
"committed": "on_close"

},
{

"name": ["*.dat" ],
"committed": "on_termination"

}
]

},
...

]
...

}

In the example, there is an overlapping match for the files file1.dat and file2.dat. For those files, it is ambigu-
ous if the commit semantics should be “on_close” or “on_termination”. Even if, in most cases, the ambiguity
can be eliminated considering the most specific match for the rules that must be used (for example, “*.dat” is
more specific than “file*” if we consider the context, i.e., the output_stream list of files specified by the
user), in the current version of CAPIO, all ambiguities are not solved, and an undefined behavior exception is
raised by the CAPIO runtime. In future releases, we will increase flexibility by relaxing such constraints and
automatically disambiguating the syntax expression when possible.

12
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It is worth mentioning that, other than carefully using wildcards, proper use of the aliases section can
help the user write a non-ambiguous and clean configuration file. For example, in Listing 2.8, we defined two
distinct aliases to specify two disjoint groups of files to which we can apply two distinct semantics rules.

Listing 2.8: Example of using aliases to avoid ambiguity.
{

"name" :"my_workflow",
"aliases" :[
{
"group_name" :"group-dat",
"files" :["file1.dat", "file2.dat"]

},
{
"group_name" :"group-txt",
"files" :["file1.txt", "file2.txt"]

}
],
"IO_Graph": [
{
"name": "writer",
"output_stream": ["group-dat", "group-txt"],
"streaming": [

{
"name": ["group-txt"],
"committed": "on_close"

},
{

"name": ["group-dat"],
"committed": "on_termination"

}
]

},
...

]
...

}

2.2 Language Semantics

In this section, we introduce the streaming semantics that allows CAPIO to transform a batch, file-based work-
flow into an in-situ workflow (i.e., a workflow where all steps are executed concurrently). To establish the file
synchronization semantics between consecutive workflow steps, we consider two temporal aspects:

1. Determining when there are no further updates to the file, referred to as the commit rule.

2. Identifying when a consumer can safely start reading a portion of data written in the file, known as the
firing rule.

In the following, we describe the semantics of the commit rule and then the semantics of the firing rule.

2.2.1 Commit rule

In the context of the producer-consumer paradigm, a file can be conceptualized as a data stream. The commit
rule defines when a given data stream terminates, i.e., all consumers have received the so-called end-of-stream
message, which tells them there will not be more data in input for that specific stream. The commit rule defines
two distinct file commit behaviors:

1. on-termination. This behavior is applied in the traditional file-based execution of workflow steps. Upon
termination of a workflow module, all produced data files are committed to the file system, becoming
ready for consumption by all subsequent consumer modules.
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2. on-close. This behavior allows a consumer module to initiate reading a file as soon as I/O operations from
all producer modules working on that specific file are completed. The completion of these I/O operations
is signaled by the close SC executed by all producer modules.

Beyond these two primary file commit behaviors, a third commit rule can be defined. We can consider a
file committed when another file has been committed. This proves beneficial when the number of open and
close SC operations for a given file is not statically known. Instead, we are aware that the I/O operations can
be considered concluded on a given file if another file has been committed. This additional commit behavior
introduces a dependency among files in the commit rule, expanding opportunities to leverage temporal paral-
lelism for I/O operations across different workflow steps.

Having introduced the commit rules, we shall define more formally the commit semantics for the producer(s)
of a given fileX:

• Commit on-Termination (CoT): fileX is considered complete only when all producer modules associ-
ated with it have terminated.

• Commit on-Close (CoC): fileX is considered complete when all producer modules have definitively
closed the file. With definitively closed, we intend that the file will not be opened to be modified/updated
again by any producer modules.

• Commit on-File (CoF): The completion semantics of fileX are contingent upon the semantics of other
files, e.g., fileY.

2.2.2 Firing rule

The firing rule defines when consumer modules of a file are permitted to consume stream data items (i.e., the
file’s records) produced by producer modules. The file’s data elements consumption can occur immediately
or be delayed based on specific events. Practically speaking, the commit rule dictates when a particular data
stream concludes, indicating that all consumers have received the so-called end-of-stream message, i.e., the
notification that there will be no further data records for that specific stream of data.
The CAPIO coordination language defines two distinct firing rules:

• Fire on-commit: whenever the commit rule is satisfied for a given file, the file is unequivocally ready to
be consumed. In other words, the commit rule implies the firing rule for the entire file. This rule is called
Fire on-Commit (FoC) and is identified in the CAPIO coordination language file with the keyword mode
and value update.

• Fire no update: file records already written by producer modules can be consumed immediately. This
behavior is referred to as Firing no-Update (FnU): the file content is ready to be read as soon as data is
written into the file. It is identified in the CAPIO coordination language with the value no_update for
the keyword mode.

There are two noteworthy scenarios. The first one arises when a consumer module attempts to open a file,
which was specified in the CAPIO configuration file, that has not yet been created. In this case, the CAPIO
runtime will halt the process executing the open SC, and the open will not return until the file is created.
The second scenario is when a consumer module tries to read a portion of a file that has not been written yet.
This behavior is nuanced as the read SC may return fewer data elements (or even 0) than what was originally
requested. In this case, the consumer process initiating the read will be paused by CAPIO runtime until one
of the following conditions is met:

• the requested data is fully produced, and the read SC returns the total number of bytes requested;

• all producer modules close the file (in the case of commit semantics being CoC) or terminate. Conse-
quently, the read SC will return the current number of bytes read, if any, or 0 to indicate the end of the
file (EOF).
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2.2.3 Streaming semantics

We shall now introduce how to express the commit and firing semantics using the CAPIO coordination lan-
guage, providing simple examples. For the following instances, we consider a workflow comprising two appli-
cations: an application called writer that produces two files and an application called reader that reads these
two files. Algorithm 1 describes the writer application in the general case, where it produces N files. In each
iteration of the main loop, it spends some time on computation and then writes the output of this computation to
a different file for each iteration. The reader application, outlined in Algorithm 2, is very similar. In each iter-
ation, it reads a file produced by the writer application and uses the data read to perform a certain computation
for a specific duration.

Algorithm 1: A simple file writer application.
Data: n_files ≥ 0 ; file_size > 0 ; secs ≥ 0
N ← 0;
while N < n_files do

buffer← compute(secs, file_size);
write_file(buffer, "fileN.dat", file_size);
N ← N + 1;

end

Algorithm 2: A simple file reader application.
Data: n_files ≥ 0 ; file_size > 0 ; secs ≥ 0
N ← 0;
while N < n_files do

buffer← read_file("fileN.dat", file_size);
compute(secs, buffer, file_size);
N ← N + 1;

end

Typically, this straightforward workflow is executed in a classic batch execution. First, the writer application
is launched to produce the input files for the reader application. Then, the reader application can start and
consume the files, reading them from the filesystem. The CAPIO middleware enables running both applications
concurrently without modifying the code of the two modules. To achieve this effectively, CAPIO needs to know
the kind of data streaming semantics (as described in the previous sections) it should enforce on the produced
and consumed files to guarantee the correct execution.

Commit on Termination, Fire on Commit (CoT-FoC)

The more stringent semantic in terms of streaming capabilities is expressed by Commit on-Termination (CoT)
with Fire On-Commit (FoC) firing rule. When this semantics is applied to a file, the reader can start reading
that file only after the writer application has terminated. This proves helpful when a section of the file can be
updated multiple times, and there is no knowledge about when the writer will cease adding data records. In this
case, the correct behavior is to wait for the writer to terminate. When CAPIO captures a read SC on a file
with such stringent semantics, it will return the data only upon the termination of the writer application.

With the CoT-FoC semantics, there is no ongoing streaming communication. However, running both ap-
plications concurrently can still be beneficial, especially in cases where the reader must perform substantial
computation before reading the data from the writer application. In Listing 2.9, we report the configuration
file expressing the CoT-FoC semantics for the simple example considered.

Listing 2.9: Simple writer-reader pipeline with Commit on-Termination Firing on-Commit semantics.
{
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"name":"my_workflow",
"IO_Graph":[

{
"name":"writer",
"output_stream":["file1.dat", "file2.dat" ],
"streaming":[

{
"name": ["file1.dat", "file2.dat" ],
"committed":"on_termination",
"mode":"update"

}
]

},
{

"name":"reader",
"input_stream":["file1.dat","file2.dat"]

}
]

}

Commit on Termination, Fire no Update (CoT-FnU)

In the next example, the structure of the workflow and its data dependency remain unchanged; only the
producer-consumer semantics changes. From a syntax standpoint, the only section that needs to be modi-
fied is the one related to the keyword streaming. Listing 2.10 shows the configuration file for the workflow
with the semantics Commit on-Termination (CoT), Firing no-Update (FnU). With this semantics, the reader
may commence reading the files file1.dat and file2.dat as soon as the writer produces data into these
files. The reader will receive the End-of-Stream (EOS) signal upon reaching the end of the file and after the
termination of the writer module. In this case, there are more opportunities for streaming communication than
in the previous semantics.
This semantics is useful when the user knows that once a section of the file is written, it will not be modified, but
they do not know when the writer will stop writing data into the file. For the workflow under consideration, this
semantics involves streaming only on the first file (i.e., file1.dat) because the writer and reader write/read
files sequentially (first file1.dat, then file2.dat, and so on). In this scenario, the reader will read the
first file until both of these conditions are true:

1. It reaches the end of the file

2. The writer terminates

When these two conditions are met, the CAPIO middleware will return the EOS signal to the reader, who will
then proceed to read the second file.

Listing 2.10: Simple pipeline. Commit on-Termination Firing no-Update.
{

"name":"my_workflow",
"IO_Graph":[

{
"name":"writer",
"output_stream":["file1.dat", "file2.dat"],
"streaming":[

{
"name": ["file1.dat", "file2.dat" ],
"committed":"on_termination",
"mode":"no_update"

},
]

},
{

"name":"reader",
"input_stream":["file1.dat","file2.dat"]

}
]

}
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Commit on Close, Fire on Commit (CoC-FoC)

The listing 2.11 shows the syntax to express the semantics Committed on-Close (CoC), Firing On-Commit
(FoC). This semantics allows the reader to start reading a file after it is closed. The mode update (as seen
before) does not allow the reader to read the data before the file is committed. In this case, the file is considered
committed as soon as it is closed. This combination of semantics is useful when the writer updates a file
multiple times, then stops writing/updating the records and closes the file. In this case, the CAPIO middleware
makes the reader wait for the completion of a file, and then it starts to read it even if the writer is still running.
With this semantics, there is no streaming communication of file records but streaming at the granularity of the
entire file.

Listing 2.11: Simple pipeline. Commit on-Close Firing on-Commit.
{

"name":"my_workflow",
"IO_Graph":[

{
"name":"writer",
"output_stream":["file1.dat", "file2.dat"],
"streaming" :[

{
"name" :["file1.dat" ],
"committed" :"on_close",
"mode" :"update"

}
]

},
{

"name":"reader",
"input_stream":["file1.dat","file2.dat"]

}
]

}

Commit on Close, Fire no Update (CoC-FnU)

The semantics Committed on-Close (CoC), Firing no-Update (FnU) (the syntax for defining this semantics is
reported in Listing 2.12) allows the user to maximize the degree of streaming between the producer and the
consumer workflow modules. In this case, the reader can start consuming data as soon as it is produced. The
reader will stop reading file records as soon as it reaches the end-of-file and the writer has closed the file. If
the reader reaches the end of the file and the writer has not yet closed it, the reader will wait until enough data
is written to satisfy the read SC operation or the writer closes the file. If the writer closes the file, the reader
receives the end-of-stream from the CAPIO middleware, and the read SC returns fewer data or EOF.

Listing 2.12: Simple pipeline. Commit on-Close Firing no-Update.
{

"name":"my_workflow",
"IO_Graph":[

{
"name":"writer",
"output_stream":["file1.dat", "file2.dat"],
"streaming" :[

{
"name" :["file1.dat", "file2.dat" ],
"committed" :"on_close",
"mode" :"no_update"

},
]

},
{

"name":"reader",
"input_stream":["file1.dat","file2.dat"]

}
]

}
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Commit on File, Fire update (CoF-FU)

The listing 2.13 shows the syntax for the semantics Commit on-File (CoF), Firing no-update (FnU). In this case,
the file2.dat is considered committed when the file1.dat is committed. In our example workflow, the
file1.dat is committed when closed; thus, file2.dat is committed with the semantics on_close, and
the firing semantics is update. Since the Firing update is the default policy, the keyword mode can be omitted
or can be set to force the no_update semantics.

Listing 2.13: Simple pipeline. Commit on-File Firing no-Update.

{
"name":"my_workflow",
"IO_Graph":[

{
"name":"writer",
"output_stream":["file1.dat", "file2.dat"],
"streaming" :[

{
"name" :["file1.dat" ],
"committed" :"on_close",
"mode" :"no_update"

},
{

"name" :["file2.dat" ],
"committed" :"on_file",
"files_deps": ["file1.dat" ],
"mode" :"update"

}
]

},
{

"name":"reader",
"input_stream":["file1.dat","file2.dat"]

}
]

}

Streaming directory contents

Here, we consider a slightly different workflow where streaming semantics is applied to a directory and its
content. The writer application remains the same (see Algorithm 1), but now the reader does not statically know
the names of the files to read, but just the name of the directory containing them. Therefore, the reader iterates
through the directory entries and reads all the files present in the directory. The pseudo-code of the reader is
reported in Algorithm 3. Listing 2.14 shows one possible configuration file for this application scenario.

Algorithm 3: Reading all files in a directory.
Data: dir_path ; secs ≥ 0
F ← next_file(dir_path) ; /* Returns a file in the directory */
while F ̸= EOS do

buffer← read_file(F );
compute(secs, buffer) F ← next_file(dir_path);

end

Streaming semantics can also be used for directories. For directories, it is possible to define the value
n_files:N for the keyword "committed". This value indicates how many files will be produced within the
directory. With this optional information, it is possible to read the entries of the directory while the writer is
creating them. The CAPIO middleware, knowing the total number of files that will be produced in the directory,
can determine when to return the EOS signal to the reader application. Of course, this information is useful
only when the firing rule for the directory is no_update (as in the example provided). If not stated differently,
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the default directory commits semantics is on_termination (the same default value applies to files). This
means that the total number of files in the directory will be known when all producers writing in the directory
terminate. It is correct to set the firing rule for a directory to no_update only if the new directory entries
created (i.e., new files in the directory) will not be removed.

Listing 2.14: Simple pipeline with a directory.
{
"name" :"my_workflow",
"IO_Graph" :

[
{

"name" :"writer",
"output_stream" :["my_dir"],
"streaming" :[

{
"dirname" :["my_dir" ],
"committed" :"n_files:500",
"mode" :"no_update"

},
{

"name" :["my_dir/*" ],
"committed" :"on_close",
"mode" :"no_update"

},
]

},{
"name" :"reader",
"input_stream" :["my_dir"]

}
]

}

2.2.4 Data dependencies

In the previous examples, we always considered a simple pipeline composed of a producer and a consumer.
In the IO-Graph section of the configuration file, it is possible to represent any DAG representing a workflow
with its data dependencies. In this paragraph, we provide an example that uses more producers and consumers.
Figure 2.1 represents a workflow composed by an Application S that produces some files that are needed by
three applications: W, X, and Z. Each of these applications reads different files, and they write the result of their
computations in the same file file-out.dat. Each application writes a different portion of this file that will be read
by the last application named Y. Listing 2.17 shows how to write the IO-Graph with the CAPIO coordination
language.

Figure 2.1: Example workflow showing files dependencies.
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Listing 2.15: A more complex workflow.
{
"name" :"my_workflow",
"IO_Graph" :

[
{

"name" :"S",
"output_stream" :["file*.dat"]

},
{

"name" :"W",
"input_stream" :["file1.dat", "file4.dat"],
"output_stream": :["file-out.dat"]

},
{

"name" :"X",
"input_stream" :["file2.dat", "file5.dat"],
"output_stream" :["file-out.dat"]

},
{

"name" :"Z",
"input_stream" :["file3.dat", "file6.dat"],
"output_stream": :["file-out.dat"]

},
{

"name" :"Y",
"input_stream" :["file-out.dat"]

}
]

}

2.3 Hints for the run-time

In this section, we describe the features offered by the coordination languages to pass hints to the CAPIO’s
runtime system to optimize file data placement. We leverage the concept of home-node, borrowed from page-
based software Distributed Shared-Memory implementations [13]. An home-node is a specific CAPIO node
within the CAPIO ecosystem that serves as the reference node for storing information about data and metadata
of a given set of files or directories.

As introduced in Section 2.1, the CAPIO language offers three distinct policies to set the home-node(s):

• create

• manual

• hashing

The user may define one or more of these policies for a disjoint set of files and directories. A given file or
directory cannot have more than one home-node policy.

More details about the implementation of the home-node policies in the current version of the CAPIO
middleware are described in Section 3.3.

Create home-node policy

The create policy is the default policy for the CAPIO coordination language. It means that this policy applies
both when the home-node-policy language section is not present at all and when the policy-name
object is explicitly set to create. If the home-node-policy language section is specified but not all files
have the home-node policy defined, then for those files, the policy is create. The semantics behavior of the
create policy is to assign as home-node the CAPIO server in which the file has been first created. As an
example, if there are two CAPIO servers, namely C1 and C2, and one workflow module has two processes (P1
and P2) running on C1 and C2, respectively, then if C1 creates the file “file.dat”, the data and metadata of that
file will be stored in the C1 server. C1 is automatically elected as home-node of the “file.dat” file.
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Manual home-node policy

When the home-node-policy keyword equals to manual, the users can explicitly set the reference node
for each individual or group of files by choosing the home-node node where a specific application module is
running. This is accomplished by specifying the workflow module’s name used in the IO_Graph section.
For instance, in the Listing 2.16, the home-node for the files “file1.dat” and “file3.dat” is the node where
the process of the writer application with logic id 0 will be executed, whereas for the file “file2.dat” and
“file4.dat” the home-node is the writer’s process with logic id 1. If the application is single-process, it is
unnecessary to set its logic id, i.e., the module name is enough. The logic id is a unique identifier (integer type)
that identifies a process of an application module. In the JSON file, it must be set according to this syntax:
module_name:id. This id is the number passed through the environmental variable CAPIO_APP_NAME
to the CAPIO runtime when launching the application. For example, let us assume that there are two CAPIO
servers, namely C1 and C2, and the writer application module is executed using two processes. The process
of the writer module running on the node C1 node will be launched with CAPIO_APP_NAME="writer:0"
environmental variable set, whereas the writer module process running on the node C2 will be launched with
the environmental variable CAPIO_APP_NAME="writer:1".

Listing 2.16: Manual home-node policy example.
{

"name" :"my_workflow",
"IO_Graph": [
{
"name": "writer",
"output_stream": ["file*.dat" ],
"streaming": [

{
"name": ["file*.dat" ],
"committed": "on_close"

}
]

},
{
"name": "reader",
"input_stream": ["file*.dat" ]

}
],
"home-node-policy": {

"manual": [
{

"name" :["file1.dat", "file3.dat" ],
"app_node": "writer:0"

},
{

"name": ["file2.dat", "file4.dat" ],
"app_node": "writer:1"

}
],

}
}

Hashing home-node policy

Another home-node policy supported by the CAPIO language is the hashing. The reference node for a given
file is selected by hashing its pathname modulo the number of CAPIO nodes running for the given workflow.
For example, the logical id of the home-node for the file “file.dat” for a workflow in which 4 CAPIO servers
are used is obtained as hash-function("$CAPIO_DIR/file.dat")%4. The hash-function is
fixed for all CAPIO servers and can be any good hashing function for strings as, for example, the std::hash
method of modern C++. To use this policy, the home_node_policy must be set to hashing, and the
keyword configuration must be omitted.
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Figure 2.2: One possible deployment for the example workflow in Figure 2.1.

Usage example of the home-node policies

Here, we present an example where the correct use of the home-node policies may significantly improve the
performance of a workflow. Figure 2.2 shows a possible deployment of the workflow represented in Figure 2.1.
In this example workflow, the workflow modules are deployed on three nodes. The application module S runs
on node0, the modules X and V on node1, and the modules Z and Y on node2. The workflow module W is
the only multi-process application, and the process with logic id 0 runs on node0 while the process with logic
id 1 runs on node1. Listing 2.17 sketches the CAPIO configuration file with the home-node policies set to
minimize the number of communications between producer-consumer nodes. The idea is to set as home-node
the node where the process that needs to read it is running. In the configuration file presented, we use the
manual configuration for the home-nodes as we can enforce a specific mapping of files to nodes. In more
complex workflows with intricated file dependencies where files are written/read by multiple processes, the
hashing policy can be a simpler solution for the user.

Listing 2.17: Files to nodes mapping using the create and manual policies for the workflow in Fig. 2.1.
{
"name" :"my_workflow",
"IO_Graph" :

[
{

"name" :"S",
"output_stream" :["file*.dat"]

},
{

"name" :"W",
"input_stream" :["file1.dat", "file4.dat"],
"output_stream": :["file-out.dat"]

},
{

"name" :"X",
"input_stream" :["file2.dat", "file5.dat"],
"output_stream" :["file-out.dat"]

},
{

"name" :"Z",
"input_stream" :["file3.dat", "file6.dat"],
"output_stream": :["file-out.dat"]

},
{

"name" :"Y",
"input_stream" :["file-out.dat"]

}
],
"home_node_policy": {

"create" :["file1.dat"],
"manual" :
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[
{

"name": ["file2.dat", "file4.dat"],
"app_node": "X"

},
{

"name": ["file5.dat"],
"app_node": "W:1"

},
{

"name": ["file3.dat", "file6.dat"],
"app_node": "Z"

},
{

"name": ["file-out.dat"],
"app_node": "Y"

}
]

}
}

Home-node policies considerations

In HPC clusters, the users are usually not aware of which nodes the applications will be executed. By using
logical names for the workflow application modules and logical IDs for the processes composing the single
application module, the users may define data placement without knowing the actual configuration of nodes
in which the workflow will be executed. Additionally, the same configuration file can be used in different
deployments. This is possible because the home-node policy depends on the applications, not on the physical
resources used.

It is worth noting that the create policy is essentially just syntactic sugar to facilitate the users. The
same data placement of the create policy can be expressed with the manual policy with more effort by the
user. Both the create and hashing policies are best suited when the user lacks deep knowledge about the
workflow and its deployment. The create policy has the advantage of being very fast during the writing of a
file by a single process because it is stored in the memory where the file is created. However, file creation may
not be well-balanced among processes or application modules, potentially using a lot more memory in some
nodes. Furthermore, if there are too many files stored on a single node, it may quickly become a bottleneck,
especially in the case of a high number of reads from different nodes.

The hashing policy may help overcome these issues by balancing the data across all nodes where the
workflow is running. However, the writing of a file can be slower because the data might be placed on a
“distant” node. In the worst-case scenario, the hashing policy might create a situation in which a file is stored
in neither the producer nor the consumer of the file, hence slowing down both read and write operations.

The create policy has been chosen as the default option as it is more accessible from a user standpoint
to work with. This policy does not require the user to explicitly state the relationship between application
modules and files produced or read. It is also simple to implement collecting the files-to-home-node mapping
in a database shared by all CAPIO servers. As discussed in subsection 3.1, the current CAPIO middleware
implements the home-node database as a set of files stored in the cluster filesystem.
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Chapter 3

The CAPIO Middleware

Introduction

CAPIO (Cross-Application Programmable I/O)1, is an open-source middleware capable of transparently inject-
ing streaming executions of I/O operations into traditional or in situ workflows to enable temporal parallelism
among workflow steps and reduce the contention on the shared file system through memory-to-memory data
transfer. CAPIO seeks to optimize the I/O used to implement the communications among distinct application
steps in scientific workflows where the file system allocates files used as communication buffers among steps.
It promotes portability by supporting the POSIX standard and targeting all workflows whose I/O backend uses
POSIX I/O system calls (SCs). Thanks to the new I/O-tailored coordination language2 whose syntax and se-
mantics were presented in Chapter 2, the CAPIO middleware shifts I/O coordination in workflow steps toward
a declarative approach.

CAPIO users specify input/output file dependencies of steps and annotate them with synchronization se-
mantics information to enable (or improve) pipeline execution between workflow steps. In doing that, CAPIO
avoids changing the existing codebase. In many application scenarios, this is a very desirable feature because
it is not always possible (e.g., because of legacy components in the workflow or closed-source applications) to
rewrite or patch existing workflow steps to enable in situ orchestration by using explicit communication among
steps. CAPIO transparently intercepts POSIX SCs of processes composing the different workflow steps and
bends their execution according to the user-provided semantics information contained in a JSON-based con-
figuration file, which is written by the users according to the I/O coordination language syntax and semantics
described in Chapter 2. The aim is to transparently overlap the execution of I/O phases and computation-I/O
phases in file-based workflow steps.

The CAPIO middleware is made of two logical tiers. The higher tier defines a coordination model allowing
the user to express relaxed synchronization semantics between producer-consumer workflow steps via an I/O
coordination language describing when a file is fireable (i.e., when its content can be accessed) and when a
file is committed (i.e., when it is completed). The lower tier implements the CAPIO runtime system, which
comprises a set of per-node user-space servers implementing the distributed data and metadata storage for the
files and directories and the SCs intercept library. This library should be dynamically linked (through the
LD_PRELOAD environment variable) to the application steps to intercept file system POSIX SCs executed on
a pre-defined CAPIO directory (i.e., the CAPIO local node mount point).

In the rest of this chapter, we introduce the CAPIO software architecture and its runtime system (Sec. 3.1),
how to deploy and run a CAPIO-based workflow in a SLURM-based cluster (Sec.3.2), and how to tune impor-
tant internal parameters of the CAPIO runtime system (Sec.3.3).

1CAPIO: https://github.com/High-Performance-IO/capio
2CLIO: Coordination Language for I/O. https://github.com/High-Performance-IO/clio.
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Figure 3.1: High-level view of the CAPIO middleware when used to coordinate I/O in a workflow application
(the example workflow appW is composed of 4 steps S, W, Q, and Y) deployed on 4 cluster nodes (one workflow
step for each cluster node).

3.1 Software Architecture

CAPIO’s runtime comprises a set of per-node user-space servers (simply CAPIO server) implementing a dis-
tributed data storage for a single application workflow. Each CAPIO Server uses the information contained
in the CAPIO configuration file provided as an input argument to enforce file exchange coordination and data
streaming according to the producer-consumer semantics described in Chapter 2.

Figure 3.1 sketches a schematic view of a possible deployment of the CAPIO Servers in a 4-node cluster
(node0-4) for the application workflow example appW. In each node where the workflow steps are deployed, a
CAPIO server handles all files and directories referenced by the step in the local node CAPIO virtual mount-
point. All SCs targeting files and directories outside the CAPIO local virtual mount point are not directly
handled by the CAPIO server and they are forwarded to the kernel.

The internals of the CAPIO server are written in C++, whereas server-to-server communications are cur-
rently implemented using MPI3 (specifically, the OpenMPI [14] implementation of the standard). The user
specifies a CAPIO local node virtual mount point for each node through the CAPIO_DIR environment vari-
able. The CAPIO System Calls Intercept Library (CAPIO SC-IL) implemented using the Linux-x86_64 system
call intercepting library syscall_intercept4 is a shared library dynamically linked to the steps of the
application workflow, through the LD_PRELOAD dynamic linker environment variable, to capture the I/O SCs
executed on files and directories inside the local node virtual mount point. SC-IL communicates with the local
CAPIO server through a concurrent circular buffer stored in a POSIX shared-memory segment protected by
POSIX Semaphores.

Figure 3.2 shows the internal primary components of the CAPIO server running on a single node. In the
following, we briefly report the main functionalities of each component.

Intra-node Shared-Memory Layer. The data exchange between the CAPIO SC-IL component running within
the application process and the CAPIO server is coordinated in this layer by leveraging the POSIX
Shared-Memory standard interface. For each workflow step running in the same node of the CAPIO

3Support for other protocols is already present, but as of now, no other libraries have been implemented into CAPIO.
4syscall_intercept: https://github.com/pmem/syscall_intercept
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Figure 3.2: The internal software components of the CAPIO Middleware running on a single node. It comprises
two distinct parts: the CAPIO server and the CAPIO System Calls Intercept Library (CAPIO SC-IL).

server, a set of shared-memory segments are allocated to store buffers and semaphores used for the syn-
chronization. Such segments will be destroyed once the application step exits.

Config/Env parser. The CAPIO Server leverages a JSON-based config file storing information related to file
coordination and streaming semantics. It also uses a set of process environmental variables to obtain
information related to the performance tuning of internal components and to know the name of the CA-
PIO_DIR. Such pieces of information are extracted by the Config and Env parser from the config file and
from the process’s env and then adequately organized to be used by other CAPIO components.

Data Storage. This component stores the contents of files for which the CAPIO server is the home node, that
is, the server that stores the master copy of the file. Portions of a given file may also be stored in other
CAPIO servers for performance reasons in order to reduce network traffic, but, however, in the current
implementation of the CAPIO middleware, a single master node is elected as the one that stores the most
recent metadata and data information of a given file or directory. The other CAPIO servers always refer to
the home node to know if a given file has updated data and metadata. By default, each file is stored in the
main memory of the CAPIO Server. Upon request, the user may select to store the file in the filesystem
through the permanent keyword in the JSON config file. In this way, the file will be preserved after the
termination of the CAPIO server. This feature is currently implemented by leveraging the mmap system
call.

Metadata cache. This component implements a cache of metadata information about files and directories
whose home node is not the current CAPIO server. A simple invalidation protocol among CAPIO servers
ensures the metadata cache stores only up-to-date information.

Optimizer. The Optimizer is a CAPIO component that implements file data caching in non-home node CAPIO
servers and enables the optimization of sending more data than requested to reduce the number of request-
reply message exchanges among CAPIO servers.

Logger. The CAPIO Logger is divided into two sections - one for storing information related to the CAPIO
server, and the other for storing information related to the CAPIO SC-IL component. These two loggers
can be activated separately and are not usually compiled into CAPIO unless explicitly told to do so, as
logfiles can usually be made of several gigabytes of data (and might leak internal information about the
data that CAPIO treats). The logger component is also capable of logging on different, increasing levels
(from 0 = do not log, to a number n, where n is the level of the reentrant function call. If the log level is
< 0, then everything is logged).

Inter-node Communication Layer. This component is responsible for managing communications between
CAPIO servers for exchanging data and metadata information. The software layer is designed to be
independent of the actual data transport method used for the communications. The abstract interface
currently uses the Message Passing Interface (MPI) library. The future releases of the CAPIO middleware
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Figure 3.3: Schema of a simple producer-consumer workflow deployed on two nodes. The picture reports the
steps executed in the request-reply protocol handling read and write operations on the "file.dat".

will allow users to select from multiple transport back-ends, as the infrastructure required to support other
libraries has already been implemented and tested.

The CAPIO server uses the names of workflow application steps to match them with their corresponding
semantics information in the configuration file. The application step name is specified at the launch time of
each workflow step by using the environment variable CAPIO_APP_NAME. During the start-up handshake
protocol, the CAPIO SC-IL sends this information to the local CAPIO server. The name of the application step
is identified by the JSON file’s language keyword name.

CAPIO implementation supports both multi-process and multi-threaded applications. By default, the file
data (and metadata) are stored in the main memory of the node where the file is created (this is the default
home_node policy adopted by the CAPIO middleware). If the consumer step is deployed in the same producer
node, the communications go through the shared memory buffer mediated by the local CAPIO server. Instead,
if the consumer steps are deployed in different cluster nodes, the requested data is transferred by direct memory-
to-memory communications between CAPIO servers. However, file data placement can be controlled by setting
the home_nodes keyword in the CAPIO configuration file.

Concerning the files’ metadata information, not all metadata are kept consistent for each data and metadata
access such as the timestamp fields for performance reasons. Instead, the file size is always kept consistent in the
home node, thus allowing CAPIO to deal with sparse files, a technique often used to write different partitions
of a single file in parallel.

Request-Reply steps between CAPIO servers

Here, we present a simple producer-consumer workflow example that involves two application steps, namely Q
(the producer of the file.dat file) and W (the consumer of that file) running on two different computing nodes.
The aim is to illustrate the producer-consumer protocol between the two CAPIO servers by describing the steps
taken to handle two possible cases: 1) W reads the file.dat before Q has produced it; 2) W reads the file when
Q has already started to produce its content. The CAPIO server where Q is deployed is the home_node of the
file. The snippet of the JSON configuration file describing the example workflow is sketched in Figure 3.3.

For the first scenario, we suppose the step W opens the file file.dat for reading, but the data for this file has
yet to be produced by the step Q. The CAPIO SC-IL intercepts the read system call (step 1) and passes the
request to the CAPIO server through a shared-memory segment containing the requests’ buffer (step 2). The
CAPIO server checks if the requested data is already present in the local data cache. If it is not present, the
CAPIO server retrieves the CAPIO home node server (step 3) and sends a data request containing the amount
of data to read to the selected server (step 4). After that, the CAPIO server continues serving any other requests
that may arrive from local workflow steps or other remote CAPIO servers. The requesting process in the W
step that issued the read SC request waits for the operation to be completed. The home node CAPIO server
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receives the read request and checks if the data is available in the local storage (step 5). In our example, the
producer Q has yet to produce the data; hence, the home node CAPIO server cannot immediately reply to the
request. When the step Q starts writing the data into the file.dat file, the CAPIO SC-IL intercepts all write
system calls (step 6), stores the data into its local cache, and then passes the data to the CAPIO Server through
a shared-memory buffer once the cache buffer is full or flushed when the file is closed (step 7). The CAPIO
Server stores the data in the local storage (step 8), updates the metadata information, and simultaneously serves
all the pending remote requests waiting for a reply (step 9). The amount of data sent as a reply message can
be greater than the initially requested size if the CAPIO Server’s Optimizer component has been configured to
perform pre-store operations aggressively. Once a reply message is received, the CAPIO Server stores the data
in the local cache (step 10) and puts the data requested by the initial read SC into the replies’ shared-memory
buffer associated with the request (step 11). Finally, the CAPIO-IL completes the read request by copying the
data into the SC buffer (step 12).

The second scenario (i.e., W starts reading the file content after that Q has already started to produce its
content) is similar to the one just described but for a few aspects. When the home node CAPIO Server receives
the read request from the CAPIO Server running on the same node of the W step, it immediately replies to
the request. It sends more data than the amount requested if it is available in the data storage up to a given
threshold that can be defined by the user through the environment variable CAPIO_PREFETCH_DATA_SIZE
(see section 3.3). We called this optimization pre-store. The aim is to optimize the data transmission and
potentially reduce the number of request-reply message exchanges.

CAPIO SC-IL

The CAPIO System Calls Intercept Library (CAPIO SC-IL) is a crucial part of the CAPIO Middleware. Its
primary function is intercepting system calls related to file and directory management. However, to guarantee
proper application behavior, it must intercept all system calls of the application workflow step with which it is
dynamically linked. Then, only a subset of all POSIX SCs will be forwarded to the CAPIO Server, specifically
only those related to files and directories contained in the CAPIO_DIR. Therefore, it is essential to keep its
overhead as low as possible.

To understand how much overhead the CAPIO SC-IL introduces, we considered the lmbench bench-
marks [15], a series of micro-benchmarks measuring OS and HW system metrics. In particular, we considered
the lat_syscall benchmark measuring the latency of some SCs largely used when dealing with files and
directories.

SCs
no

intercept

CAPIO

intercept

open 1.35 1.49

read 0.18 0.23

write 0.13 0.18

stat 0.45 0.52

fstat 0.19 0.24

Table 3.1: Execution time (in microseconds) of the lat_syscall test from lmbech benchmark suite consid-
ering some relevant SCs. The tests were executed on an Intel(R) CascadeLake 8260 CPU running at 2.4 GHz
(Centos 8.3.2011, Linux 4.18.0-240 version).

We tested two cases: 1) no LD_PRELOAD, which means no SC intercept; and 2) the CAPIO intercept
library by setting LD_PRELOAD=libcapio_posix.so. In the latter case, we set as CAPIO_DIR the
/dev/null directory to measure only the extra cost of using the CAPIO SC-IL library. The results obtained by
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averaging multiple repetitions of the tests are reported in Table 3.1. Overall, the extra overhead introduced by
the CAPIO intercept library is relatively small.

Home node implementation

The home node DB is currently implemented with POSIX files in the distributed filesystem and is updated/ac-
cessed by the CAPIO servers using POSIX file locking to avoid race conditions, and it is cached in the main
memory of each CAPIO server for performance reasons since file-to-home node mappings do not change.
However, in the future, we plan to explore alternative solutions such as in-memory distributed DBs. When a
process wants to read a file, it must know which node serves as the home node for that file. If the home node
is known statically, then it is straightforward. However, if the home node policy is dynamic, the only way to
retrieve the home node is through a query to the home node database.

Currently, there are three home node policies: ’create,’ ’manual,’ and ’hashing.’ ’Create’ and ’manual’ are
dynamic policies because the home node is determined only at runtime. In contrast, the hashing policy is static
because retrieving the node only requires applying the hashing function to the path of the file.

At the moment, a file is stored in the memory of the home node, but in the future, we plan to provide users
with the option to distribute the content of a file across multiple nodes. This technique is called ’Data Stripping’
and is commonly used in distributed file systems to mitigate the bottleneck of a single node. Distributing the
content of a file across multiple locations is beneficial for improving the performance of multiple parallel read
requests to different parts of a file.

3.2 Deployment

To deploy a workflow with CAPIO, a CAPIO server must be launched on each node where the workflow will be
executed. Additionally, for each application step in the workflow, the CAPIO SC-IL library must be linked by
setting the environment variable LD_PRELOAD to the path of the CAPIO shared library (libcapio_posix.so).
In listing 3.1 is presented an example of a SLURM script for a simple workflow using the CAPIO middleware.
The workflow comprises two application components: a writer and a reader. It is worth remarking that with
CAPIO, the writer and reader components of the workflow are executed concurrently. In this simple scenario,
the workflow runs on two cluster nodes, with the writer launched on the first node and the reader on the second
node. The CAPIO server is present on both nodes. In the future, to facilitate the CAPIO deployment, we
planned to integrate the CAPIO middleware with some workflow management systems such as StreamFlow [16]
and Dagon* [17] to automate the deployment of CAPIO.

Listing 3.1: SLURM script example to execute the reader-writer example workflow with CAPIO.

1 #!/bin/bash
2 #SBATCH --exclusive
3 #SBATCH --job-name=my_workflow
4 #SBATCH --error=myJob%j.err # standard error file
5 #SBATCH --output=myJob%j.out # standard output file
6 #SBATCH --nodes=2
7

8 # GET THE LIST OF NODES
9 read -d ’ ’ -a nodelist <<< "$(scontrol show hostnames $SLURM_NODELIST)"

10

11 if [ $# -ne 3 ]
12 then
13 echo "Usage: $0 CAPIO_HOME CAPIO_DIR CONF_FILE"
14 exit 1
15 fi
16

17 capio_home=$1 # the install directory of CAPIO
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18 capio_dir=$2 # the CAPIO virtual mount-point
19 conf_file=$3 # the name of the JSON configuration file
20

21 # RUN ONE CAPIO SERVER IN EACH NODE
22 srun --exact -N $SLURM_NNODES -n $SLURM_NNODES --ntasks-per-node=1

$capio_home/src/capio_server server.log $conf_file &
23 SERVER_PID=$!
24

25 # RUN A WRITER PROCCES IN THE NODE 0
26 srun -N 1 -n 1 -w ${nodelist[0]} --exact --export=ALL,LD_PRELOAD="

$capio_home/libcapio_posix.so",CAPIO_DIR="$capio_dir", CAPIO_APP_NAME
="writer" ./writer &

27 WRITER_PID=$!
28

29 # RUN A READER PROCESS IN THE NODE 1
30 srun -N 1 -n 1 -w ${nodelist[1]} --exact --export=ALL,LD_PRELOAD="

$capio_home/libcapio_posix.so",CAPIO_DIR="$capio_dir", CAPIO_APP_NAME
="reader" ./reader

31

32 wait $WRITER_PID
33 kill $SERVER_PID

3.3 Configuration options

In the following, we report a set of environmental variables to be used to tune both the performance of the
CAPIO middleware and the logging configuration and verbosity. We distinguish between “server-side”, “client-
side”, and “both” to refer to who uses the variable, the CAPIO server, the CAPIO SC-IL, or both.

• CAPIO_FILE_INIT_SIZE (server-side): The default space in RAM reserved for files stored by the
CAPIO server is 1MB. It can be beneficial to set this variable with a larger value for efficiency because
when a file exceeds the reserved space, memory must be reallocated to a larger size.

• CAPIO_PREFETCH_DATA_SIZE (server-side): The number of bytes to prefetch from a remote CA-
PIO server when a remote read is requested. The default is 0. It means that only the requested data is
retrieved. Setting this variable to a larger value is helpful for aggressively caching data between nodes.

• CAPIO_WRITER_CACHE_SIZE (client-side): The number of bytes for the cache between the ap-
plication and the local CAPIO server for write operations. The default value is 0, indicating no cache.
Configuring this cache enhances performance when a file undergoes numerous sequential small write
operations.

• CAPIO_READER_CACHE_SIZE (client-side): The number of bytes for the cache between the ap-
plication and the local CAPIO server for read operations. The default value is 0, indicating no cache.
Configuring this cache may enhance performance when a file undergoes numerous sequential small read
operations.

• CAPIO_N_ELEMS_DATA_BUFS (both): The number of elements of the shared circular buffer used
for data communication between the CAPIO SC-IL and the local CAPIO server.

• CAPIO_WINDOW_DATA_BUFS_SIZE (both): The size in bytes of the elements of the shared circular
buffer used for data communication between the CAPIO SC-IL and the local CAPIO server.

• CAPIO_LOG_DIR (both): this environmental variable redefines the default directory in which log files
are stored.
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• CAPIO_LOG_PREFIX (both): This environment variable redefines the names of the log files CAPIO
uses. By default, the CAPIO SC-IL and the CAPIO server create log files into:
‘CAPIO_LOG_DIR/posix/<machine_hostname>/<thread_id>.log’
‘CAPIO_LOG_DIR/server/<machine_hostname>/<thread_id>.log’

• CAPIO_MAX_LOG_LEVEL (both): this environmental variable is used to tune the verbosity level of
the CAPIO logging.
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Chapter 4

Use-Cases

Introduction

In this chapter, we describe two workflows used to validate the expressivity of the I/O coordination language
and the performance of the CAPIO runtime system.

The first workflow, called 1000 Genomes [18], is a relatively complex DAG-based bioinformatics workflow
computing human genome mutation overlap. The original 1000 Genomes workflow was implemented using
Bash and Python scripts. It was later re-implemented using C++ and the Boost library, which reduced the total
execution time by more than 3×. We selected this workflow because of the non-trivial interactions (i.e., files and
directories dependencies) between the different components implementing the entire 1000 Genomes workflow.
We tested CAPIO language synchronization semantics using the commit-on-Close Firing-no-Update (CoC-
FnU) to transparently enable pipeline parallelism among the workflow application modules. We performed
our experiments deploying the CAPIO middleware on the GALILEO1001 Tier-1 supercomputer hosted by
CINECA supercomputing center2. Each computing node we used for the experiments has 2 Intel CascadeLake
8260 CPUs, with 24 cores, each running at 2.4 GHz and equipped with 384GB RAM. The distribution is Centos
8.3.2011 with the Linux kernel version 4.18.0-240. The storage system is based on Lustre open source parallel
files system [19]. Each cluster node is connected through a switched 100 Gb/s Infiniband interconnect. The
scratch directory (mounted on the Lustre file system under /g100_scratch) is connected to the storage with
a 100Gb/s Infiniband interconnect. In our experiments, when using the file system, we always used the scratch
directory to store the files and directories.

The second workflow tested is the WRF-visualization workflow, which is a small part of a more complex
Environmental Applications (ENV) ADMIRE use-case [20]. We considered this workflow because the WRF
part is a parallel MPI-based application written in Fortran, which is challenging to modify to implement a tightly
coupled interaction with the visualization module of the workflow that is implemented as a Python script. We
performed our experiments deploying the CAPIO middleware on the HPC4AI cluster (a.k.a. UNITO cluster)3

comprising 68 Broadwell nodes connected through an OPA 100Gbit/s network. Each node is equipped with 2
Intel(R) Xeon(R) E5-2697 v4 running at 2.3GHz, 18 cores each. The distribution is Ubuntu 20.04.5 LTS, and
the Linux kernel version is 5.4.0-137. The filesystem used for the tests is BeeGFS.

4.1 1000 Genome Workflow

The workflow called 1000 Genome refers to a DAG-based bioinformatics workflow computing human genome
mutation overlaps.

It comprises file application components (also called modules): individuals, merge individuals, sifting,
mutation overlap, and frequency. The individuals module can be replicated in multiple independent instances.
Each instance analyzes a partition of the input file and generates a directory containing 2, 504 temporary small

1GALILEO100: https://www.hpc.cineca.it/hardware/galileo100
2CINECA: https://www.cineca.it/en
3HPC4AI Cluster: https://hpc4ai.unito.it
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Figure 4.1: 1000 Genome workflow structure.

files (whose sizes depend on the number of individuals, – in the range 1 − 15KB with 16 instances). The
sifting module runs in parallel with all individuals components. The individuals_merge module reads all the
files in the directories produced by all individuals and combines them into one single directory with 2, 504
files, where each file is a merge of all files with the same name produced by the individuals. The last two
workflow components, mutation_overlap and frequency, are independent. They read the input dataset and the
data produced by previous steps.

Figure 4.1 shows the five components of the workflow and their non-trivial dependencies.

Listing 4.1: CAPIO configuration file for the 1000 genome workflow using the CoC-FnU semantics.
{
"name" :"1000_genome",
"IO_Graph" :
[

{
"name" :"download",
"output_stream" :["data"],
"streaming" :[

{
"name" :["data*"],
"committed" :"on_close",
"mode" :"no_update"

}
]

},
{

"name" :"individuals",
"input_stream" :["data/20130502/ALL.chr1.250000.vcf"],
"output_stream" :["chr1n-*"],
"streaming" :[

{
"dirname" :["chr1n-*"],
"committed" :"n_files:2504",
"mode" :"no_update"
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},
{

"name" :["chr1n-*/*"],
"committed" :"on_close",
"mode" :"no_update"

}
]

},

{
"name" :"individuals_merge",
"input_stream" :["chr1n-*"],
"output_stream" :["chr1n"],
"streaming" :[

{
"dirname" :["chr1n"],
"committed" :"n_files:2504",
"mode" :"no_update"

},
{

"name" :["chr1n/*"],
"committed" :"on_close",
"mode" :"no_update"

}
]

},

{
"name" :"sifting",
"input_stream" :["data/20130502/sifting/ALL.chr1.phase3_shapeit2_mvncall_integrated_v5

(cont.).20130502.sites.annotation.vcf"],
"output_stream" :["sifted.SIFT.chr1.txt"],
"streaming" :[

{
"name" :["sifted.SIFT.chr1.txt"],
"committed" :"on_close",
"mode" :"no_update"

}
]

},

{
"name" :"mutations_overlap",
"input_stream" :["sifted.SIFT.chr1.txt", "chr1n", "data/populations/ALL", "data/20130502/

(cont.)columns.txt"],
"output_stream" :["chr1-ALL.tar.gz"]

},

{
"name" :"frequency",
"input_stream" :["sifted.SIFT.chr1.txt", "chr1n", "data/populations/ALL", "data/20130502/

(cont.)columns.txt"],
"output_stream" :["chr1-ALL-freq.tar.gz"]

}
]
}

We tested CAPIO with CoC-FnU synchronization semantics (see Section 2.2) to exploit temporal paral-
lelism among the workflow components. The CAPIO configuration file is reported in Listing 4.1. For example,
mutation_overlap and frequency start reading the input dataset while individuals_merge and sifting are still run-
ning. Additionally, they start reading files produced by merge_individuals as soon as a file is available without
waiting for all 2, 504 files to be produced. Such overlap among distinct workflow modules is unattainable with
the traditional file-based workflow execution model. The 1000 Genomes workflow was originally implemented
using Bash and Python scripts. We tested CAPIO with the fastest version (i.e., the C++-based one) using one
single chromosome simulation. Different simulations on different chromosomes generate independent work-
flows that can be executed in parallel on distinct cluster nodes.

We tested the workflow execution with CAPIO on the GALILEO100 cluster using 20 cluster nodes. Specif-
ically, 16 individuals instances (one for each node), and 1 instance of mutation_overlap and frequency. With
this configuration, the files produced are 16× 2, 504 = 40, 064.
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Figure 4.2: WRF-visualization workflow schema. This is a part of the ADMIRE ENV application work-
flow [20].

Overall, CAPIO reduces the execution time over the filesystem-based execution by about 39% (from about
393s to about 179s). The interested reader may find a more detailed discussion about the performance results
of the 1000 Genome workflow in [5].

4.2 WRF-visualization Workflow

The WRF-visualization workflow is part of the Environmental Applications (ENV) ADMIRE use-case [20] [21].
The entire workflow comprises several steps. We focused on the post-processing part and, specifically, the pro-
duction of PNG images for visualization purposes, executed after the WRF (Weather Research and Forecasting
model [22] component. In fact, these two components currently work in batch, i.e., first, the WRF module
produces all the files resulting from the simulation, then the visualization script reads all the files produced and
creates the PNG output files. By using the CAPIO middleware, we aim to run these two applications together,
exploiting pipeline parallelism between the two components, without modifying the existing code.

The WRF-visualization workflow is sketched in Figure 4.2. The CAPIO configuration file for the workflow
is shown in Listing 4.2. The WRF application produces the output binary files of the simulation in the working
directory (’.’) one after the other. The post-processing application reads all files (’./*’) to produce PNG images
depicting the status of the simulation at a certain point in time.

The number of output binary files produced by the WRF application depends on an input parameter (the
number of hours simulated). Therefore, it is not possible to set the n_files commit value for the working di-
rectory in the configuration file. This is why the commit rule for the working directory is on_termination.
A file is never deleted after it is created in the current directory; therefore, the post-processing application can
read the directory entries of the working directory concurrently with the WRF application. To achieve this
behavior, the mode keyword (i.e., defining the firing rule) is set to no_update. The streaming semantics of
the files produced by WRF is CoC (committed on close), whereas the keyword mode is set to update because
a file can be updated multiple times by the WRF module (the files will not be re-opened once closed). With the
simple configuration file shown in Listing 4.2, we can achieve the desired streaming parallelism behavior.

Listing 4.2: CAPIO configuration file for the WRF-visualization workflow using the CoC-FU semantics.
{
"name" :"WRF_WORKFLOW",
"IO_Graph" :
[

{
"name" :"WRF",
"output_stream" :[".", "./*"],
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"streaming" :[
{

"dirname" :["."],
"committed" :"on_termination",
"mode" :"no_update"

},
{

"name" :["./*"],
"committed" :"on_close"

}
]

},
{

"name" :"visualization",
"input_stream" :["./*"]

}

]
}

We tested the WRF-visualization workflow execution with CAPIO using 96 MPI processes on 4 cluster
nodes of the UNITO cluster. The test considered 2-domains and 25-hours simulation. Overall, CAPIO reduced
the execution time over the filesystem-based execution by about 17% (from 2538s to 2098s). The first output file
was produced after 761s in the filesystem-based workflow execution and after about 80s in the CAPIO-based
workflow execution. In the ADMIRE deliverable “D7.4 - Validation of project outcomes through applications”,
due by the end of the project, we will provide more extensive performance results.
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Chapter 5

Conclusion

HPC workloads are moving fast from monolithic applications to workflows with a mix of co-engineered and
legacy components communicating through the portable file-based interface and using the file system as a
communication media.

In this document, we presented a novel I/O coordination language developed as one of the components
of the ADMIRE software stack. We described the syntax and semantics of the I/O coordination language,
as well as its current implementation within the CAPIO middleware. CAPIO can transparently inject I/O
streaming capabilities into file-based workflows, leveraging the directives and hints the user provides through
a JSON-based configuration file describing the I/O synchronization semantics of file dependencies among the
workflow’s application modules according to the I/O coordination language rules. By transparently intercepting
POSIX-based I/O system calls, CAPIO enables temporal overlap of distinct workflow application modules. We
described the synchronization semantics currently supported by the I/O coordination language and its associated
CAPIO runtime.

We plan to finalize the integration of the CAPIO middleware with the WRF-visualization workflow in
the ENV application use case where the initial tests have already demonstrated the benefits of the temporal
overlap of distinct application components without the need to rewrite entirely or part of their code. A thorough
performance analysis and more comprehensive tests will be provided as part of the project validation outcomes.

Finally, the I/O coordination language and the CAPIO middleware were both released as open-source and
freely available online.

37



ADMIRE APPENDIX A. ACRONYMS

Appendix A

Acronyms

The following is the list of acronyms used throughout the document.

• HPC: High Performance Computing.

• WP: Workpackage.

• IC: Intelligent Controller.

• CAPIO: Cross-Application Programmable IO.

• CLIO: Coordination Language for IO.

• WMS: Workflow Management System.

• DSL: Domain Specific Lnaguage.

• CWL: Common Workflow Language.

• GUI: Graphical User Interface.

• API: Application Programming Interface.

• XML: eXtensible Markup Language.

• POSIX: Portable Operating System Interface for Unix.

• SC: System Call.

• CAPIO SC-IL: CAPIO System Call Intercept Library.

• JSON: JavaScript Object Notation.

• MPI: Message Passing Interface.

• EOF: End Of File.

• EOS: End Of Stream.

• CAPIO_DIR: CAPIO Directory. The virtual mount-mount of the CAPIO infrastructure.

• CAPIO conf. file: It is the JSON file written according to the I/O coordination language syntax. It is get
as an input file by each CAPIO server.

• WRF: Weather Research and Forecasting model.

• CoC: Commit on Close semantics.

38



APPENDIX A. ACRONYMS ADMIRE

• CoT: Commit on Termination semantics

• CoF: Commit on File semantics.

• FoC: Firing on Commit semantics.

• FnU: Firing on Update semantics.
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Appendix B

JSON Schema of the I/O coordination
language

Here we report the JSON schema of the I/O coordination language implemented in the CAPIO middleware.
The most up-to-date version can be found at the following web link:

https://github.com/High-Performance-IO/clio.

1 {
2 "$schema": "https://json-schema.org/draft/2020-12/schema",
3 "type": "object",
4 "properties": {
5 "name": {
6 "description": "Name of the workflow",
7 "type": "string"
8 },
9 "aliases": {"$ref": "#/$defs/aliases" },

10 "IO_Graph": {
11 "description": "Representation of data dependencies between applications and streaming

semantics",
12 "type": "array",
13 "items": {
14 "type": "object",
15 "properties": {
16 "name": {"$ref": "#/$defs/application_name" },
17 "input_stream": {"description": "Files read by the application", "$ref": "#/$defs/

list_of_files" },
18 "output_stream": {"description": "Files produced by the application", "$ref": "#/

$defs/list_of_files" },
19 "streaming": {"description": "Streaming semantics of files produced by the

application", "$ref": "#/$defs/streaming" }
20 },
21 "required": ["name"],
22 "dependentRequired": {
23 "streaming": ["output_stream"]
24 }
25 }
26 },
27 "permanent": {"description": "Files that will be stored in the filesystem at the end of the

workflow execution", "$ref": "#/$defs/list_of_files" },
28 "exclude": {
29 "description": "Files that will not be handled by CAPIO even if they are in the CAPIODIR",
30 "$ref": "#/$defs/list_of_files"
31 },
32 "home_node_policy": {"$ref": "#/$defs/home_node_policy" }
33 },
34 "required": ["name", "IO_Graph"],
35
36 "$defs": {
37
38 "aliases": {
39 "description": "Defines aliases for groups of files",
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40 "type": "array",
41 "items": {
42 "type": "object",
43 "properties": {
44 "group_name": {"type": "string" },
45 "files": {"$ref": "#/$defs/list_of_files" }
46 }
47 }
48 },
49
50 "application_name": {
51 "description": "Name of the application",
52 "type": "string"
53 },
54
55 "list_of_files": {
56 "type": "array",
57 "items": {
58 "type": "string"
59 },
60 "minItems": 1
61 },
62
63 "streaming": {
64 "description": "Streaming semantics of files produced by the application",
65 "type" :"array",
66 "items": {
67 "type": "object",
68 "oneOf" :[
69 {
70 "properties": {
71 "name": {"$ref": "#/$defs/list_of_files" },
72 "committed" :{
73 "description": "Commit rule",
74 "type" :"string",
75 "pattern": "^(on_termination)$|^(on_close(:([1-9]+))?)$|on_file"
76 }
77 },
78 "required" :["name", "committed"]
79 },
80 {
81 "properties": {
82 "dirname": {"$ref": "#/$defs/list_of_files" },
83 "committed" :{
84 "description": "Commit rule",
85 "type" :"string",
86 "pattern": "^(on_termination)$|^(n_files(:([1-9]+)([0-9]*))?)$|on_file"
87 }
88 },
89 "required" :["dirname", "committed"]
90 }
91 ],
92 "properties": {
93 "mode" :{
94 "description": "Firing rule",
95 "enum": ["update", "no_update"]
96 }
97 },
98 "if": {
99 "type": "object",

100 "properties": {
101 "committed": {"const": "on_file" }
102 }
103 },
104 "then": {
105 "properties": {
106 "files_deps": {
107 "$ref": "#/$defs/list_of_files"
108 }
109 },
110 "required": ["files_deps"]
111 },
112 "unevaluatedProperties": false
113 },
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114 "minItems": 1
115 },
116 "home_node_policy": {
117 "description": "In which nodes the files are stored during the workflow execution",
118 "type": "object",
119 "properties": {
120 "manual": {
121 "description": "Name of the policy",
122 "type": "array",
123 "items": {
124 "type": "object",
125 "properties": {
126 "name": {"$ref": "#/$defs/list_of_files" },
127 "app_node" :{
128 "description": "Appname:LogicID",
129 "type": "string",
130 "pattern": "^([a-z]+(:([0-9]+))?)$"
131 }
132 },
133 "required": ["name", "app_node"]
134 },
135 "minItems": 1
136 },
137 "hashing" :{"$ref": "#/$defs/list_of_files" },
138 "create" :{"$ref": "#/$defs/list_of_files" }
139 },
140 "additionalProperties": false
141 }
142 },
143 "additionalProperties": false
144 }
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